File size: 2,440 Bytes
e53040e
 
 
 
 
 
ba1c9a4
 
e53040e
 
 
 
 
 
 
 
 
 
 
2c96cd0
ba1c9a4
 
e53040e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c96cd0
e53040e
ba1c9a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f80ba1b
 
 
ba1c9a4
 
e53040e
 
 
70d08ea
e53040e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: dinov2-base_rice-leaf-disease-augmented_fft_012825
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dinov2-base_rice-leaf-disease-augmented_fft_012825

This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0125
- Accuracy: 0.9965

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 0.8384        | 1.0   | 250  | 0.931    | 0.2042          |
| 0.1037        | 2.0   | 500  | 0.96     | 0.1290          |
| 0.0574        | 3.0   | 750  | 0.977    | 0.0657          |
| 0.0255        | 4.0   | 1000 | 0.985    | 0.0527          |
| 0.0096        | 5.0   | 1250 | 0.988    | 0.0374          |
| 0.0052        | 6.0   | 1500 | 0.997    | 0.0128          |
| 0.0018        | 7.0   | 1750 | 0.9945   | 0.0131          |
| 0.0027        | 8.0   | 2000 | 0.997    | 0.0122          |
| 0.0004        | 9.0   | 2250 | 0.997    | 0.0153          |
| 0.0013        | 10.0  | 2500 | 0.997    | 0.0128          |
| 0.0004        | 11.0  | 2750 | 0.9965   | 0.0147          |
| 0.0004        | 12.0  | 3000 | 0.997    | 0.0155          |
| 0.0003        | 13.0  | 3250 | 0.9955   | 0.0118          |
| 0.0004        | 14.0  | 3500 | 0.9955   | 0.0123          |
| 0.0003        | 15.0  | 3750 | 0.9965   | 0.0125          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0