--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B tags: - generated_from_trainer model-index: - name: 6e1a46d2917b4862d38a4f0c9b349b78 results: [] --- # 6e1a46d2917b4862d38a4f0c9b349b78 This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) on the nyu-mll/glue [stsb] dataset. It achieves the following results on the evaluation set: - Loss: 2.0875 - Data Size: 1.0 - Epoch Runtime: 161.4278 - Mse: 0.5218 - Mae: 0.5519 - R2: 0.7666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:-------:|:--------:| | No log | 0 | 0 | 448.9303 | 0 | 4.7458 | 112.2354 | 10.3057 | -49.2069 | | No log | 1 | 179 | 88.2811 | 0.0078 | 5.8425 | 22.0705 | 3.7456 | -8.8729 | | No log | 2 | 358 | 79.4700 | 0.0156 | 15.1152 | 19.8687 | 3.4889 | -7.8880 | | No log | 3 | 537 | 8.6103 | 0.0312 | 27.0614 | 2.1534 | 1.1714 | 0.0367 | | No log | 4 | 716 | 12.3908 | 0.0625 | 35.6056 | 3.0979 | 1.5029 | -0.3858 | | No log | 5 | 895 | 5.2826 | 0.125 | 52.5455 | 1.3211 | 0.9492 | 0.4090 | | 2.2677 | 6 | 1074 | 4.7406 | 0.25 | 74.0799 | 1.1853 | 0.9211 | 0.4698 | | 3.7239 | 7 | 1253 | 4.6343 | 0.5 | 117.4151 | 1.1584 | 0.8625 | 0.4818 | | 2.6132 | 8.0 | 1432 | 6.7421 | 1.0 | 192.2860 | 1.6860 | 1.0907 | 0.2458 | | 1.6451 | 9.0 | 1611 | 2.3480 | 1.0 | 155.3065 | 0.5871 | 0.5916 | 0.7374 | | 1.4991 | 10.0 | 1790 | 2.3674 | 1.0 | 167.1774 | 0.5922 | 0.6104 | 0.7351 | | 1.2215 | 11.0 | 1969 | 2.0947 | 1.0 | 156.1953 | 0.5239 | 0.5679 | 0.7657 | | 1.058 | 12.0 | 2148 | 3.7766 | 1.0 | 167.6526 | 0.9443 | 0.7900 | 0.5776 | | 1.5368 | 13.0 | 2327 | 2.0198 | 1.0 | 180.6919 | 0.5051 | 0.5459 | 0.7740 | | 0.7465 | 14.0 | 2506 | 2.2596 | 1.0 | 170.0243 | 0.5652 | 0.5900 | 0.7472 | | 0.5813 | 15.0 | 2685 | 2.1532 | 1.0 | 155.3671 | 0.5384 | 0.5654 | 0.7591 | | 0.5467 | 16.0 | 2864 | 3.2212 | 1.0 | 164.9452 | 0.8057 | 0.7418 | 0.6396 | | 0.6682 | 17.0 | 3043 | 2.0875 | 1.0 | 161.4278 | 0.5218 | 0.5519 | 0.7666 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.1