--- library_name: transformers license: mit base_model: deepseek-ai/DeepSeek-R1-Distill-Qwen-7B tags: - generated_from_trainer metrics: - accuracy model-index: - name: 0be52334109f7de89ae483ae7934e6ff results: [] --- # 0be52334109f7de89ae483ae7934e6ff This model is a fine-tuned version of [deepseek-ai/DeepSeek-R1-Distill-Qwen-7B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B) on the contemmcm/trec dataset. It achieves the following results on the evaluation set: - Loss: 1.0305 - Data Size: 1.0 - Epoch Runtime: 162.3387 - Accuracy: 0.9625 - F1 Macro: 0.9522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------------:|:--------:|:--------:| | No log | 0 | 0 | 24.0991 | 0 | 2.1170 | 0.1146 | 0.0434 | | No log | 1 | 170 | 25.0678 | 0.0078 | 3.2572 | 0.2896 | 0.1368 | | No log | 2 | 340 | 4.9327 | 0.0156 | 12.5939 | 0.5979 | 0.5061 | | No log | 3 | 510 | 1.9932 | 0.0312 | 26.1874 | 0.8396 | 0.7274 | | No log | 4 | 680 | 2.2692 | 0.0625 | 37.0808 | 0.8187 | 0.7867 | | 0.2962 | 5 | 850 | 1.0584 | 0.125 | 51.6924 | 0.9417 | 0.9259 | | 0.2962 | 6 | 1020 | 1.3186 | 0.25 | 72.8640 | 0.9229 | 0.9305 | | 1.1754 | 7 | 1190 | 0.8004 | 0.5 | 111.3242 | 0.9563 | 0.9492 | | 0.7022 | 8.0 | 1360 | 0.9660 | 1.0 | 178.2920 | 0.9583 | 0.9631 | | 0.382 | 9.0 | 1530 | 1.1431 | 1.0 | 153.1476 | 0.9604 | 0.9644 | | 0.5167 | 10.0 | 1700 | 0.9932 | 1.0 | 164.1829 | 0.9667 | 0.9692 | | 0.3482 | 11.0 | 1870 | 1.0305 | 1.0 | 162.3387 | 0.9625 | 0.9522 | ### Framework versions - Transformers 4.57.0 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.1