File size: 1,426 Bytes
a37cc1c
 
 
 
 
 
 
 
 
457f939
a37cc1c
2de1e6e
 
 
 
 
 
 
a37cc1c
 
4a3a522
a37cc1c
2de1e6e
a37cc1c
 
 
6b208dc
 
28669de
a37cc1c
2247688
 
 
 
 
 
 
 
 
 
 
 
 
e831c21
 
2247688
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- phi
- gguf
datasets:
- mlabonne/FineTome-100k
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- PawanKrd/math-gpt-4o-200k
- V3N0M/Jenna-50K-Alpaca-Uncensored
---

# Phi-3.5-mini-instruct-uncensored

- **Developed by:** Carsen Klock
- **License:** apache-2.0
- **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit

This Phi3.5 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. 

Trained on 1 x 4080 SUPER over 10500 Epochs as a test. This is for test purposes only.

GGUFs are included in this repository for inference


Running in transformers
```py
# Use a pipeline as a high-level helper
from transformers import pipeline

messages = [
    {"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="carsenk/phi3.5_mini_exp_825_uncensored")
pipe(messages)

print(pipe(messages))
```


Running in llama.cpp (Use GGUF)
```py
from llama_cpp import Llama

llm = Llama.from_pretrained(
	repo_id="carsenk/phi3.5_mini_exp_825_uncensored",
	filename="unsloth.BF16.gguf",
)

llm.create_chat_completion(
		messages = [
			{
				"role": "user",
				"content": "What is the capital of France?"
			}
		]
)
```