File size: 1,426 Bytes
a37cc1c 457f939 a37cc1c 2de1e6e a37cc1c 4a3a522 a37cc1c 2de1e6e a37cc1c 6b208dc 28669de a37cc1c 2247688 e831c21 2247688 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
base_model: unsloth/phi-3.5-mini-instruct-bnb-4bit
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- phi
- gguf
datasets:
- mlabonne/FineTome-100k
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
- cognitivecomputations/dolphin-coder
- PawanKrd/math-gpt-4o-200k
- V3N0M/Jenna-50K-Alpaca-Uncensored
---
# Phi-3.5-mini-instruct-uncensored
- **Developed by:** Carsen Klock
- **License:** apache-2.0
- **Finetuned from model :** unsloth/phi-3.5-mini-instruct-bnb-4bit
This Phi3.5 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
Trained on 1 x 4080 SUPER over 10500 Epochs as a test. This is for test purposes only.
GGUFs are included in this repository for inference
Running in transformers
```py
# Use a pipeline as a high-level helper
from transformers import pipeline
messages = [
{"role": "user", "content": "Who are you?"},
]
pipe = pipeline("text-generation", model="carsenk/phi3.5_mini_exp_825_uncensored")
pipe(messages)
print(pipe(messages))
```
Running in llama.cpp (Use GGUF)
```py
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="carsenk/phi3.5_mini_exp_825_uncensored",
filename="unsloth.BF16.gguf",
)
llm.create_chat_completion(
messages = [
{
"role": "user",
"content": "What is the capital of France?"
}
]
)
``` |