Upload Orpheus_Auto_Continuations_Generator.ipynb
Browse files
inference_code/Orpheus_Auto_Continuations_Generator.ipynb
ADDED
|
@@ -0,0 +1,683 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "4821055b-c45c-4a9f-8196-2a9d09df6c39",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Orpheus Auto-Continuations Generator (ver. 1.0)\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"***\n",
|
| 11 |
+
"\n",
|
| 12 |
+
"Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools\n",
|
| 13 |
+
"\n",
|
| 14 |
+
"***\n",
|
| 15 |
+
"\n",
|
| 16 |
+
"WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"***\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"#### Project Los Angeles\n",
|
| 21 |
+
"\n",
|
| 22 |
+
"#### Tegridy Code 2025\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"***"
|
| 25 |
+
]
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"cell_type": "markdown",
|
| 29 |
+
"id": "a6e2249a-6b57-4193-830d-7772c29b6f38",
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"source": [
|
| 32 |
+
"# Setup environment"
|
| 33 |
+
]
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"cell_type": "code",
|
| 37 |
+
"execution_count": null,
|
| 38 |
+
"id": "1de7766b-1df0-4281-9322-650068da2a2d",
|
| 39 |
+
"metadata": {},
|
| 40 |
+
"outputs": [],
|
| 41 |
+
"source": [
|
| 42 |
+
"!git clone --depth 1 https://github.com/asigalov61/tegridy-tools"
|
| 43 |
+
]
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"cell_type": "code",
|
| 47 |
+
"execution_count": null,
|
| 48 |
+
"id": "7e9de3f7-4a3d-41d0-a6b6-1bc8fc98fa6e",
|
| 49 |
+
"metadata": {
|
| 50 |
+
"scrolled": true
|
| 51 |
+
},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"!pip install huggingface_hub\n",
|
| 55 |
+
"!pip install hf-transfer\n",
|
| 56 |
+
"\n",
|
| 57 |
+
"!pip install ipywidgets\n",
|
| 58 |
+
"!pip install tqdm\n",
|
| 59 |
+
"\n",
|
| 60 |
+
"!pip install einx\n",
|
| 61 |
+
"!pip install einops\n",
|
| 62 |
+
"!pip install torch-summary\n",
|
| 63 |
+
"!pip install scikit-learn\n",
|
| 64 |
+
"!pip install matplotlib"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "markdown",
|
| 69 |
+
"id": "68799e16-da90-4f1b-97c8-813bd5df665e",
|
| 70 |
+
"metadata": {},
|
| 71 |
+
"source": [
|
| 72 |
+
"# Import modules"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"cell_type": "code",
|
| 77 |
+
"execution_count": null,
|
| 78 |
+
"id": "6073f1b3-edca-49b1-bfed-2029a9efda35",
|
| 79 |
+
"metadata": {},
|
| 80 |
+
"outputs": [],
|
| 81 |
+
"source": [
|
| 82 |
+
"# Load modules and make data dir\n",
|
| 83 |
+
"\n",
|
| 84 |
+
"print('Loading modules...')\n",
|
| 85 |
+
"\n",
|
| 86 |
+
"import os\n",
|
| 87 |
+
"\n",
|
| 88 |
+
"os.environ[\"HF_HUB_ENABLE_HF_TRANSFER\"] = \"1\"\n",
|
| 89 |
+
"\n",
|
| 90 |
+
"import pickle\n",
|
| 91 |
+
"import random\n",
|
| 92 |
+
"import tqdm\n",
|
| 93 |
+
"\n",
|
| 94 |
+
"!set USE_FLASH_ATTENTION=1\n",
|
| 95 |
+
"os.environ['USE_FLASH_ATTENTION'] = '1'\n",
|
| 96 |
+
"\n",
|
| 97 |
+
"import torch\n",
|
| 98 |
+
"import numpy as np\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"from torchsummary import summary\n",
|
| 101 |
+
"from sklearn.metrics.pairwise import cosine_similarity\n",
|
| 102 |
+
"\n",
|
| 103 |
+
"%cd /home/ubuntu/tegridy-tools/tegridy-tools/\n",
|
| 104 |
+
"\n",
|
| 105 |
+
"import TMIDIX\n",
|
| 106 |
+
"\n",
|
| 107 |
+
"%cd /home/ubuntu/tegridy-tools/tegridy-tools/X-Transformer\n",
|
| 108 |
+
"\n",
|
| 109 |
+
"from x_transformer_2_3_1 import *\n",
|
| 110 |
+
"\n",
|
| 111 |
+
"torch.set_float32_matmul_precision('high')\n",
|
| 112 |
+
"torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul\n",
|
| 113 |
+
"torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn\n",
|
| 114 |
+
"torch.backends.cuda.enable_flash_sdp(True)\n",
|
| 115 |
+
"torch.backends.cuda.enable_cudnn_sdp(False)\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"!set USE_FLASH_ATTENTION=1\n",
|
| 118 |
+
"\n",
|
| 119 |
+
"%cd /home/ubuntu/\n",
|
| 120 |
+
"\n",
|
| 121 |
+
"import random\n",
|
| 122 |
+
"\n",
|
| 123 |
+
"from huggingface_hub import hf_hub_download\n",
|
| 124 |
+
"\n",
|
| 125 |
+
"print('Done')\n",
|
| 126 |
+
"\n",
|
| 127 |
+
"print('Torch version:', torch.__version__)"
|
| 128 |
+
]
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"cell_type": "markdown",
|
| 132 |
+
"id": "f94d805e-ac8a-400b-9e9c-a6ff572c4b80",
|
| 133 |
+
"metadata": {},
|
| 134 |
+
"source": [
|
| 135 |
+
"# Download Orpheus model and Orpheus embeddings dataset"
|
| 136 |
+
]
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"cell_type": "code",
|
| 140 |
+
"execution_count": null,
|
| 141 |
+
"id": "2f8d75d4-982b-4a60-a234-afc71aa6dd84",
|
| 142 |
+
"metadata": {},
|
| 143 |
+
"outputs": [],
|
| 144 |
+
"source": [
|
| 145 |
+
"print('=' * 70)\n",
|
| 146 |
+
"print('Donwloading Orpheus Music Transformer model...')\n",
|
| 147 |
+
"print('=' * 70)\n",
|
| 148 |
+
"\n",
|
| 149 |
+
"model_file = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer',\n",
|
| 150 |
+
" filename='Orpheus_Music_Transformer_Trained_Model_128497_steps_0.6934_loss_0.7927_acc.pth',\n",
|
| 151 |
+
" local_dir='/home/ubuntu/Models/',\n",
|
| 152 |
+
" )\n",
|
| 153 |
+
"\n",
|
| 154 |
+
"\n",
|
| 155 |
+
"print('=' * 70)\n",
|
| 156 |
+
"print('Donwloading Orpheus embeddings dataset...')\n",
|
| 157 |
+
"print('=' * 70)\n",
|
| 158 |
+
"\n",
|
| 159 |
+
"emb_file = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer',\n",
|
| 160 |
+
" filename='orpheus_data/1765807_Orpheus_Training_Data_Reference_MP_Embeddings_CC_BY_NC_SA.npy',\n",
|
| 161 |
+
" local_dir='/home/ubuntu/Models/',\n",
|
| 162 |
+
" )\n",
|
| 163 |
+
"\n",
|
| 164 |
+
"print('=' * 70)\n",
|
| 165 |
+
"print('Done!')\n",
|
| 166 |
+
"print('=' * 70)"
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"cell_type": "markdown",
|
| 171 |
+
"id": "30147799-9bc5-4acd-8352-d5fe309bd844",
|
| 172 |
+
"metadata": {},
|
| 173 |
+
"source": [
|
| 174 |
+
"# Load model and embeddings"
|
| 175 |
+
]
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"cell_type": "code",
|
| 179 |
+
"execution_count": null,
|
| 180 |
+
"id": "d95d650e-a6b6-4fca-bc3d-75bd1c042c06",
|
| 181 |
+
"metadata": {},
|
| 182 |
+
"outputs": [],
|
| 183 |
+
"source": [
|
| 184 |
+
"#=================================================================\n",
|
| 185 |
+
"\n",
|
| 186 |
+
"def get_embeddings(inputs):\n",
|
| 187 |
+
" \n",
|
| 188 |
+
" with ctx:\n",
|
| 189 |
+
" with torch.no_grad():\n",
|
| 190 |
+
" out = model(inputs, return_outputs=True)\n",
|
| 191 |
+
" \n",
|
| 192 |
+
" cache = out[3]\n",
|
| 193 |
+
"\n",
|
| 194 |
+
" hidden = cache.layer_hiddens[-1]\n",
|
| 195 |
+
" \n",
|
| 196 |
+
" mean_pool = torch.mean(hidden, dim=1)\n",
|
| 197 |
+
" \n",
|
| 198 |
+
" return mean_pool.cpu().detach().numpy()\n",
|
| 199 |
+
"\n",
|
| 200 |
+
"#=================================================================\n",
|
| 201 |
+
"\n",
|
| 202 |
+
"exists_ratio = lambda sub, main, ratio: sum(x in set(main) for x in sub) / len(sub) >= ratio\n",
|
| 203 |
+
"\n",
|
| 204 |
+
"#=================================================================\n",
|
| 205 |
+
"\n",
|
| 206 |
+
"print('=' * 70)\n",
|
| 207 |
+
"print('Loading Orpheus Music Transformer model...')\n",
|
| 208 |
+
"print('=' * 70)\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"SEQ_LEN = 8192\n",
|
| 211 |
+
"PAD_IDX = 18819\n",
|
| 212 |
+
"\n",
|
| 213 |
+
"model = TransformerWrapper(\n",
|
| 214 |
+
" num_tokens = PAD_IDX+1,\n",
|
| 215 |
+
" max_seq_len = SEQ_LEN,\n",
|
| 216 |
+
" attn_layers = Decoder(dim = 2048,\n",
|
| 217 |
+
" depth = 8,\n",
|
| 218 |
+
" heads = 32,\n",
|
| 219 |
+
" rotary_pos_emb = True,\n",
|
| 220 |
+
" attn_flash = True\n",
|
| 221 |
+
" )\n",
|
| 222 |
+
" )\n",
|
| 223 |
+
"\n",
|
| 224 |
+
"model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)\n",
|
| 225 |
+
"\n",
|
| 226 |
+
"print('=' * 70)\n",
|
| 227 |
+
"print('Loading model checkpoint...')\n",
|
| 228 |
+
"\n",
|
| 229 |
+
"model.load_state_dict(torch.load(model_file, weights_only=True))\n",
|
| 230 |
+
"\n",
|
| 231 |
+
"print('=' * 70)\n",
|
| 232 |
+
"\n",
|
| 233 |
+
"model.cuda()\n",
|
| 234 |
+
"model.eval()\n",
|
| 235 |
+
"\n",
|
| 236 |
+
"print('Done!')\n",
|
| 237 |
+
"\n",
|
| 238 |
+
"summary(model)\n",
|
| 239 |
+
"\n",
|
| 240 |
+
"dtype = torch.bfloat16\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"ctx = torch.amp.autocast(device_type='cuda', dtype=dtype)\n",
|
| 243 |
+
"\n",
|
| 244 |
+
"#=================================================================\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"print('=' * 70)\n",
|
| 247 |
+
"print('Loading Orpheus embeddings dataset...')\n",
|
| 248 |
+
"print('=' * 70)\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"embeddings = np.load(emb_file)\n",
|
| 251 |
+
"\n",
|
| 252 |
+
"print('=' * 70)\n",
|
| 253 |
+
"print('Done!')\n",
|
| 254 |
+
"print('=' * 70)"
|
| 255 |
+
]
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"cell_type": "markdown",
|
| 259 |
+
"id": "e3a4cd32-4680-4d35-b46e-0022369715b7",
|
| 260 |
+
"metadata": {},
|
| 261 |
+
"source": [
|
| 262 |
+
"# Create IO dirs"
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "code",
|
| 267 |
+
"execution_count": null,
|
| 268 |
+
"id": "d27279a0-2892-4aca-a074-1ebe3e82bb94",
|
| 269 |
+
"metadata": {},
|
| 270 |
+
"outputs": [],
|
| 271 |
+
"source": [
|
| 272 |
+
"print('=' * 70) \n",
|
| 273 |
+
"print('Creating IO dirs...')\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"input_midis_dir = '/home/ubuntu/Input MIDIs/'\n",
|
| 276 |
+
"output_midis_dir = '/home/ubuntu/Output MIDIs/'\n",
|
| 277 |
+
"\n",
|
| 278 |
+
"midi_files_list = []\n",
|
| 279 |
+
"\n",
|
| 280 |
+
"os.makedirs(input_midis_dir, exist_ok=True)\n",
|
| 281 |
+
"os.makedirs(output_midis_dir, exist_ok=True)\n",
|
| 282 |
+
"\n",
|
| 283 |
+
"print('Done!')\n",
|
| 284 |
+
"print('=' * 70) "
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"cell_type": "markdown",
|
| 289 |
+
"id": "03e505df-42bc-4246-8b11-1e98e7b2515a",
|
| 290 |
+
"metadata": {},
|
| 291 |
+
"source": [
|
| 292 |
+
"# Create MIDIs files list"
|
| 293 |
+
]
|
| 294 |
+
},
|
| 295 |
+
{
|
| 296 |
+
"cell_type": "code",
|
| 297 |
+
"execution_count": null,
|
| 298 |
+
"id": "829f6093-67f5-4655-83c7-8af36ef60079",
|
| 299 |
+
"metadata": {},
|
| 300 |
+
"outputs": [],
|
| 301 |
+
"source": [
|
| 302 |
+
"print('=' * 70)\n",
|
| 303 |
+
"print('Creating MIDI files list...')\n",
|
| 304 |
+
"print('=' * 70) \n",
|
| 305 |
+
"\n",
|
| 306 |
+
"midi_files_list = TMIDIX.create_files_list([input_midis_dir])\n",
|
| 307 |
+
"print('=' * 70) "
|
| 308 |
+
]
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"cell_type": "markdown",
|
| 312 |
+
"id": "e2e041a5-5564-41d1-a2b2-0cc92dc713ae",
|
| 313 |
+
"metadata": {},
|
| 314 |
+
"source": [
|
| 315 |
+
"# Generate"
|
| 316 |
+
]
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"cell_type": "code",
|
| 320 |
+
"execution_count": null,
|
| 321 |
+
"id": "cb9a7864-028b-468f-9fda-72abe84d6edc",
|
| 322 |
+
"metadata": {
|
| 323 |
+
"scrolled": true
|
| 324 |
+
},
|
| 325 |
+
"outputs": [],
|
| 326 |
+
"source": [
|
| 327 |
+
"print('=' * 70) \n",
|
| 328 |
+
"print('Orpheus Auto-Continuations Generator')\n",
|
| 329 |
+
"print('=' * 70)\n",
|
| 330 |
+
"\n",
|
| 331 |
+
"#=========================================================================\n",
|
| 332 |
+
"# Generation options\n",
|
| 333 |
+
"#=========================================================================\n",
|
| 334 |
+
"\n",
|
| 335 |
+
"# Primary generation options\n",
|
| 336 |
+
"num_prime_tokens = 1024\n",
|
| 337 |
+
"num_songs_per_midi = 4\n",
|
| 338 |
+
"num_gen_chunks = 12\n",
|
| 339 |
+
"max_num_tries = 4\n",
|
| 340 |
+
"\n",
|
| 341 |
+
"# Model sampling options\n",
|
| 342 |
+
"num_gen_tokens = 512\n",
|
| 343 |
+
"batch_size = 32\n",
|
| 344 |
+
"temperature = 1.0\n",
|
| 345 |
+
"top_p_value = 0.96\n",
|
| 346 |
+
"num_mem_tokens = 7168 # up to 12 chunks\n",
|
| 347 |
+
"\n",
|
| 348 |
+
"# Advanced options\n",
|
| 349 |
+
"max_tok_rep_ratio = 0.95\n",
|
| 350 |
+
"num_rep_window_toks = 1024\n",
|
| 351 |
+
"num_emb_tokens = 1024\n",
|
| 352 |
+
"\n",
|
| 353 |
+
"# Aux options\n",
|
| 354 |
+
"score_var = 0.05\n",
|
| 355 |
+
"batch_size_step = 4\n",
|
| 356 |
+
"\n",
|
| 357 |
+
"#=========================================================================\n",
|
| 358 |
+
"\n",
|
| 359 |
+
"if not midi_files_list:\n",
|
| 360 |
+
" \n",
|
| 361 |
+
" print('=' * 70)\n",
|
| 362 |
+
" print('Generating prime tokens...')\n",
|
| 363 |
+
" print('=' * 70)\n",
|
| 364 |
+
"\n",
|
| 365 |
+
" x = torch.LongTensor([[18816, 0]] * batch_size).cuda()\n",
|
| 366 |
+
"\n",
|
| 367 |
+
" with ctx:\n",
|
| 368 |
+
" out = model.generate(x,\n",
|
| 369 |
+
" num_prime_tokens,\n",
|
| 370 |
+
" temperature=temperature,\n",
|
| 371 |
+
" filter_logits_fn=top_p,\n",
|
| 372 |
+
" filter_kwargs={'thres': top_p_value},\n",
|
| 373 |
+
" return_prime=True,\n",
|
| 374 |
+
" verbose=True)\n",
|
| 375 |
+
"\n",
|
| 376 |
+
" y = out.tolist()\n",
|
| 377 |
+
" \n",
|
| 378 |
+
" inp = torch.LongTensor(y).cuda()\n",
|
| 379 |
+
" \n",
|
| 380 |
+
" embs = get_embeddings(inp)\n",
|
| 381 |
+
" \n",
|
| 382 |
+
" scores = cosine_similarity(embeddings, embs).max(axis=0)\n",
|
| 383 |
+
"\n",
|
| 384 |
+
" scores = [o for o in scores if o != max(scores)]\n",
|
| 385 |
+
"\n",
|
| 386 |
+
" max_score = max(scores)\n",
|
| 387 |
+
"\n",
|
| 388 |
+
" max_score_idx = scores.index(max_score)\n",
|
| 389 |
+
" melody_chords = y[max_score_idx]\n",
|
| 390 |
+
"\n",
|
| 391 |
+
" midi_fname = 'Improvisation'\n",
|
| 392 |
+
" midi_files_list.append(midi_fname)\n",
|
| 393 |
+
" \n",
|
| 394 |
+
" print('=' * 70)\n",
|
| 395 |
+
" print('Done!')\n",
|
| 396 |
+
" print('=' * 70)\n",
|
| 397 |
+
" print('Generating songs for \"Improvisation\"')\n",
|
| 398 |
+
" print('=' * 70)\n",
|
| 399 |
+
" \n",
|
| 400 |
+
"#=========================================================================\n",
|
| 401 |
+
"\n",
|
| 402 |
+
"for midi_file in midi_files_list:\n",
|
| 403 |
+
"\n",
|
| 404 |
+
" if midi_file != 'Improvisation':\n",
|
| 405 |
+
"\n",
|
| 406 |
+
" midi_fname = os.path.splitext(os.path.basename(midi_file))[0]\n",
|
| 407 |
+
" \n",
|
| 408 |
+
" print('=' * 70)\n",
|
| 409 |
+
" print('Generating songs for MIDI file \"' + midi_fname + '\"')\n",
|
| 410 |
+
" print('-' * 70) \n",
|
| 411 |
+
" \n",
|
| 412 |
+
" #==============================================================================\n",
|
| 413 |
+
" \n",
|
| 414 |
+
" raw_score = TMIDIX.midi2single_track_ms_score(midi_file)\n",
|
| 415 |
+
" \n",
|
| 416 |
+
" escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True)\n",
|
| 417 |
+
" \n",
|
| 418 |
+
" escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True)\n",
|
| 419 |
+
" \n",
|
| 420 |
+
" escore_notes = TMIDIX.remove_duplicate_pitches_from_escore_notes(escore_notes)\n",
|
| 421 |
+
" \n",
|
| 422 |
+
" escore_notes = TMIDIX.fix_escore_notes_durations(escore_notes, min_notes_gap=0)\n",
|
| 423 |
+
" \n",
|
| 424 |
+
" dscore = TMIDIX.delta_score_notes(escore_notes)\n",
|
| 425 |
+
" \n",
|
| 426 |
+
" dcscore = TMIDIX.chordify_score([d[1:] for d in dscore])\n",
|
| 427 |
+
" \n",
|
| 428 |
+
" melody_chords = [18816]\n",
|
| 429 |
+
" \n",
|
| 430 |
+
" #=======================================================\n",
|
| 431 |
+
" # MAIN PROCESSING CYCLE\n",
|
| 432 |
+
" #=======================================================\n",
|
| 433 |
+
" \n",
|
| 434 |
+
" for i, c in enumerate(dcscore):\n",
|
| 435 |
+
" \n",
|
| 436 |
+
" delta_time = c[0][0]\n",
|
| 437 |
+
" \n",
|
| 438 |
+
" melody_chords.append(delta_time)\n",
|
| 439 |
+
" \n",
|
| 440 |
+
" for e in c:\n",
|
| 441 |
+
" \n",
|
| 442 |
+
" #=======================================================\n",
|
| 443 |
+
" \n",
|
| 444 |
+
" # Durations\n",
|
| 445 |
+
" dur = max(1, min(255, e[1]))\n",
|
| 446 |
+
" \n",
|
| 447 |
+
" # Patches\n",
|
| 448 |
+
" pat = max(0, min(128, e[5]))\n",
|
| 449 |
+
" \n",
|
| 450 |
+
" # Pitches\n",
|
| 451 |
+
" ptc = max(1, min(127, e[3]))\n",
|
| 452 |
+
" \n",
|
| 453 |
+
" # Velocities\n",
|
| 454 |
+
" # Calculating octo-velocity\n",
|
| 455 |
+
" \n",
|
| 456 |
+
" vel = max(8, min(127, e[4]))\n",
|
| 457 |
+
" velocity = round(vel / 15)-1\n",
|
| 458 |
+
" \n",
|
| 459 |
+
" #=======================================================\n",
|
| 460 |
+
" # FINAL NOTE SEQ\n",
|
| 461 |
+
" #=======================================================\n",
|
| 462 |
+
" \n",
|
| 463 |
+
" # Writing final note\n",
|
| 464 |
+
" pat_ptc = (128 * pat) + ptc \n",
|
| 465 |
+
" dur_vel = (8 * dur) + velocity\n",
|
| 466 |
+
" \n",
|
| 467 |
+
" melody_chords.extend([pat_ptc+256, dur_vel+16768]) # 18816\n",
|
| 468 |
+
"\n",
|
| 469 |
+
" #==============================================================================\n",
|
| 470 |
+
"\n",
|
| 471 |
+
" print('Total number of input tokens:', len(melody_chords))\n",
|
| 472 |
+
" print('=' * 70)\n",
|
| 473 |
+
"\n",
|
| 474 |
+
" #==============================================================================\n",
|
| 475 |
+
"\n",
|
| 476 |
+
" song_number = 0\n",
|
| 477 |
+
" \n",
|
| 478 |
+
" while song_number < num_songs_per_midi:\n",
|
| 479 |
+
"\n",
|
| 480 |
+
" print('Generating song #', song_number+1, '/', num_songs_per_midi)\n",
|
| 481 |
+
" print('=' * 70)\n",
|
| 482 |
+
" \n",
|
| 483 |
+
" song = melody_chords[:num_prime_tokens][-num_mem_tokens:]\n",
|
| 484 |
+
" \n",
|
| 485 |
+
" inp = torch.LongTensor([song]).cuda()\n",
|
| 486 |
+
" \n",
|
| 487 |
+
" embs = get_embeddings(inp)\n",
|
| 488 |
+
" \n",
|
| 489 |
+
" start_score = cosine_similarity(embeddings, embs).max(axis=0)[0]\n",
|
| 490 |
+
"\n",
|
| 491 |
+
" b_size = batch_size\n",
|
| 492 |
+
" stop = False\n",
|
| 493 |
+
" \n",
|
| 494 |
+
" for i in tqdm.tqdm(range(num_gen_chunks)):\n",
|
| 495 |
+
" \n",
|
| 496 |
+
" max_score = -1\n",
|
| 497 |
+
" num_tries = 0\n",
|
| 498 |
+
" \n",
|
| 499 |
+
" if i > 7:\n",
|
| 500 |
+
" bsize = b_size - batch_size_step\n",
|
| 501 |
+
" \n",
|
| 502 |
+
" while max_score < start_score - score_var:\n",
|
| 503 |
+
" \n",
|
| 504 |
+
" output = []\n",
|
| 505 |
+
" output_scores = []\n",
|
| 506 |
+
" \n",
|
| 507 |
+
" x = torch.LongTensor([song[-num_mem_tokens:]] * b_size).cuda()\n",
|
| 508 |
+
" \n",
|
| 509 |
+
" with ctx:\n",
|
| 510 |
+
" out = model.generate(x,\n",
|
| 511 |
+
" num_gen_tokens,\n",
|
| 512 |
+
" temperature=temperature,\n",
|
| 513 |
+
" filter_logits_fn=top_p,\n",
|
| 514 |
+
" filter_kwargs={'thres': top_p_value},\n",
|
| 515 |
+
" return_prime=True,\n",
|
| 516 |
+
" verbose=False)\n",
|
| 517 |
+
" \n",
|
| 518 |
+
" y = out.tolist()\n",
|
| 519 |
+
" \n",
|
| 520 |
+
" for yy in y:\n",
|
| 521 |
+
" if 18817 not in yy and 18818 not in yy and not exists_ratio(yy[-num_gen_tokens:], \n",
|
| 522 |
+
" song[-num_rep_window_toks:], \n",
|
| 523 |
+
" max_tok_rep_ratio\n",
|
| 524 |
+
" ):\n",
|
| 525 |
+
" output.append(yy[-num_emb_tokens:])\n",
|
| 526 |
+
" \n",
|
| 527 |
+
" if output:\n",
|
| 528 |
+
" \n",
|
| 529 |
+
" inp = torch.LongTensor(output).cuda()\n",
|
| 530 |
+
" \n",
|
| 531 |
+
" embs = get_embeddings(inp)\n",
|
| 532 |
+
" \n",
|
| 533 |
+
" scores = cosine_similarity(embeddings, embs).max(axis=0)\n",
|
| 534 |
+
" output_scores.extend(scores)\n",
|
| 535 |
+
" \n",
|
| 536 |
+
" scores = [o for o in output_scores if o != max(output_scores)]\n",
|
| 537 |
+
" \n",
|
| 538 |
+
" if not scores:\n",
|
| 539 |
+
" max_score = -1\n",
|
| 540 |
+
" num_tries += 1\n",
|
| 541 |
+
" \n",
|
| 542 |
+
" if num_tries == max_num_tries:\n",
|
| 543 |
+
" stop = True\n",
|
| 544 |
+
" break\n",
|
| 545 |
+
" \n",
|
| 546 |
+
" if i > max_num_tries:\n",
|
| 547 |
+
" song = song[:-num_gen_tokens]\n",
|
| 548 |
+
" \n",
|
| 549 |
+
" else:\n",
|
| 550 |
+
" max_score = max(scores)\n",
|
| 551 |
+
" \n",
|
| 552 |
+
" else:\n",
|
| 553 |
+
" num_tries += 1\n",
|
| 554 |
+
" \n",
|
| 555 |
+
" if num_tries == max_num_tries:\n",
|
| 556 |
+
" stop = True\n",
|
| 557 |
+
" break\n",
|
| 558 |
+
" \n",
|
| 559 |
+
" if i > max_num_tries:\n",
|
| 560 |
+
" song = song[:-num_gen_tokens]\n",
|
| 561 |
+
" \n",
|
| 562 |
+
" if stop:\n",
|
| 563 |
+
" break\n",
|
| 564 |
+
" \n",
|
| 565 |
+
" max_score_idx = output_scores.index(max_score)\n",
|
| 566 |
+
" max_score_chunk = output[max_score_idx]\n",
|
| 567 |
+
" \n",
|
| 568 |
+
" song.extend(max_score_chunk[-num_gen_tokens:])\n",
|
| 569 |
+
"\n",
|
| 570 |
+
" #==============================================================================\n",
|
| 571 |
+
" \n",
|
| 572 |
+
" if i > num_gen_chunks // 2:\n",
|
| 573 |
+
"\n",
|
| 574 |
+
" print('=' * 70)\n",
|
| 575 |
+
" print('Saving song...')\n",
|
| 576 |
+
" print('=' * 70)\n",
|
| 577 |
+
" \n",
|
| 578 |
+
" print('Sample INTs', song[:15])\n",
|
| 579 |
+
" \n",
|
| 580 |
+
" song_f = []\n",
|
| 581 |
+
" \n",
|
| 582 |
+
" time = 0\n",
|
| 583 |
+
" dur = 1\n",
|
| 584 |
+
" vel = 90\n",
|
| 585 |
+
" pitch = 60\n",
|
| 586 |
+
" channel = 0\n",
|
| 587 |
+
" patch = 0\n",
|
| 588 |
+
" \n",
|
| 589 |
+
" patches = [-1] * 16\n",
|
| 590 |
+
" \n",
|
| 591 |
+
" channels = [0] * 16\n",
|
| 592 |
+
" channels[9] = 1\n",
|
| 593 |
+
" \n",
|
| 594 |
+
" for ss in song:\n",
|
| 595 |
+
" \n",
|
| 596 |
+
" if 0 <= ss < 256:\n",
|
| 597 |
+
" \n",
|
| 598 |
+
" time += ss * 16\n",
|
| 599 |
+
" \n",
|
| 600 |
+
" if 256 <= ss < 16768:\n",
|
| 601 |
+
" \n",
|
| 602 |
+
" patch = (ss-256) // 128\n",
|
| 603 |
+
" \n",
|
| 604 |
+
" if patch < 128:\n",
|
| 605 |
+
" \n",
|
| 606 |
+
" if patch not in patches:\n",
|
| 607 |
+
" if 0 in channels:\n",
|
| 608 |
+
" cha = channels.index(0)\n",
|
| 609 |
+
" channels[cha] = 1\n",
|
| 610 |
+
" else:\n",
|
| 611 |
+
" cha = 15\n",
|
| 612 |
+
" \n",
|
| 613 |
+
" patches[cha] = patch\n",
|
| 614 |
+
" channel = patches.index(patch)\n",
|
| 615 |
+
" else:\n",
|
| 616 |
+
" channel = patches.index(patch)\n",
|
| 617 |
+
" \n",
|
| 618 |
+
" if patch == 128:\n",
|
| 619 |
+
" channel = 9\n",
|
| 620 |
+
" \n",
|
| 621 |
+
" pitch = (ss-256) % 128\n",
|
| 622 |
+
" \n",
|
| 623 |
+
" \n",
|
| 624 |
+
" if 16768 <= ss < 18816:\n",
|
| 625 |
+
" \n",
|
| 626 |
+
" dur = ((ss-16768) // 8) * 16\n",
|
| 627 |
+
" vel = (((ss-16768) % 8)+1) * 15\n",
|
| 628 |
+
" \n",
|
| 629 |
+
" song_f.append(['note', time, dur, channel, pitch, vel, patch])\n",
|
| 630 |
+
" \n",
|
| 631 |
+
" patches = [0 if x==-1 else x for x in patches]\n",
|
| 632 |
+
"\n",
|
| 633 |
+
" output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)\n",
|
| 634 |
+
"\n",
|
| 635 |
+
" output_dir = os.path.join(output_midis_dir, midi_fname)\n",
|
| 636 |
+
"\n",
|
| 637 |
+
" os.makedirs(output_dir, exist_ok=True)\n",
|
| 638 |
+
" \n",
|
| 639 |
+
" detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,\n",
|
| 640 |
+
" output_signature = 'Orpheus Music Transformer',\n",
|
| 641 |
+
" output_file_name = output_dir + '/Orpheus-Music-Transformer-Composition_'+str(song_number+1).zfill(3),\n",
|
| 642 |
+
" track_name='Project Los Angeles',\n",
|
| 643 |
+
" list_of_MIDI_patches=patches\n",
|
| 644 |
+
" )\n",
|
| 645 |
+
"\n",
|
| 646 |
+
" song_number += 1\n",
|
| 647 |
+
" \n",
|
| 648 |
+
" print('=' * 70)\n",
|
| 649 |
+
" print('Done!')\n",
|
| 650 |
+
" print('=' * 70)"
|
| 651 |
+
]
|
| 652 |
+
},
|
| 653 |
+
{
|
| 654 |
+
"cell_type": "markdown",
|
| 655 |
+
"id": "f892ac8a-9f5f-462d-b3b9-d4be1f78b31d",
|
| 656 |
+
"metadata": {},
|
| 657 |
+
"source": [
|
| 658 |
+
"# Congrats! You did it ! :)"
|
| 659 |
+
]
|
| 660 |
+
}
|
| 661 |
+
],
|
| 662 |
+
"metadata": {
|
| 663 |
+
"kernelspec": {
|
| 664 |
+
"display_name": "Python 3 (ipykernel)",
|
| 665 |
+
"language": "python",
|
| 666 |
+
"name": "python3"
|
| 667 |
+
},
|
| 668 |
+
"language_info": {
|
| 669 |
+
"codemirror_mode": {
|
| 670 |
+
"name": "ipython",
|
| 671 |
+
"version": 3
|
| 672 |
+
},
|
| 673 |
+
"file_extension": ".py",
|
| 674 |
+
"mimetype": "text/x-python",
|
| 675 |
+
"name": "python",
|
| 676 |
+
"nbconvert_exporter": "python",
|
| 677 |
+
"pygments_lexer": "ipython3",
|
| 678 |
+
"version": "3.10.12"
|
| 679 |
+
}
|
| 680 |
+
},
|
| 681 |
+
"nbformat": 4,
|
| 682 |
+
"nbformat_minor": 5
|
| 683 |
+
}
|