import torch from huggingface_hub import hf_hub_download from PIL import Image import torchvision.transforms as transforms # You'll need to include your model definition # Copy the AdvancedDeepSVDD class and related code here # or import from your training script def load_model(repo_id="ash12321/ai-image-detector-deepsvdd"): """Download and load model from HuggingFace""" model_path = hf_hub_download( repo_id=repo_id, filename="model.ckpt" ) # Load model (requires model definition) from model import AdvancedDeepSVDD model = AdvancedDeepSVDD.load_from_checkpoint(model_path) model.eval() return model def predict_image(image_path, model): """Predict if image is AI-generated""" transform = transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize( mean=[0.4914, 0.4822, 0.4465], std=[0.2470, 0.2435, 0.2616] ) ]) image = Image.open(image_path).convert('RGB') image_tensor = transform(image).unsqueeze(0) with torch.no_grad(): is_fake, scores, distances = model.predict_anomaly(image_tensor) return { 'is_ai_generated': bool(is_fake[0].item()), 'confidence': float(scores[0].item()), 'anomaly_score': float(scores[0].item()), 'distance': float(distances[0].item()) } # Example usage if __name__ == "__main__": model = load_model() result = predict_image("test_image.jpg", model) print(f"AI-Generated: {result['is_ai_generated']}") print(f"Confidence: {result['confidence']*100:.1f}%")