ash12321's picture
Upload AI Image Detector model
75aaabf verified
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
import torchvision.transforms as transforms
# You'll need to include your model definition
# Copy the AdvancedDeepSVDD class and related code here
# or import from your training script
def load_model(repo_id="ash12321/ai-image-detector-deepsvdd"):
"""Download and load model from HuggingFace"""
model_path = hf_hub_download(
repo_id=repo_id,
filename="model.ckpt"
)
# Load model (requires model definition)
from model import AdvancedDeepSVDD
model = AdvancedDeepSVDD.load_from_checkpoint(model_path)
model.eval()
return model
def predict_image(image_path, model):
"""Predict if image is AI-generated"""
transform = transforms.Compose([
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.4914, 0.4822, 0.4465],
std=[0.2470, 0.2435, 0.2616]
)
])
image = Image.open(image_path).convert('RGB')
image_tensor = transform(image).unsqueeze(0)
with torch.no_grad():
is_fake, scores, distances = model.predict_anomaly(image_tensor)
return {
'is_ai_generated': bool(is_fake[0].item()),
'confidence': float(scores[0].item()),
'anomaly_score': float(scores[0].item()),
'distance': float(distances[0].item())
}
# Example usage
if __name__ == "__main__":
model = load_model()
result = predict_image("test_image.jpg", model)
print(f"AI-Generated: {result['is_ai_generated']}")
print(f"Confidence: {result['confidence']*100:.1f}%")