initial commit
Browse files- __init__.py +0 -0
- __pycache__/__init__.cpython-311.pyc +0 -0
- __pycache__/configuration_aria.cpython-311.pyc +0 -0
- __pycache__/modeling_aria.cpython-311.pyc +0 -0
- config.json +22 -0
- configuration_aria.py +50 -0
- model.safetensors +3 -0
- modeling_aria.py +565 -0
__init__.py
ADDED
|
File without changes
|
__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (133 Bytes). View file
|
|
|
__pycache__/configuration_aria.cpython-311.pyc
ADDED
|
Binary file (2.44 kB). View file
|
|
|
__pycache__/modeling_aria.cpython-311.pyc
ADDED
|
Binary file (25 kB). View file
|
|
|
config.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"AriaForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"bos_token_id": 0,
|
| 6 |
+
"eos_token_id": 1,
|
| 7 |
+
"hidden_size": 1536,
|
| 8 |
+
"intermediate_size": 6144,
|
| 9 |
+
"max_position_embeddings": 8192,
|
| 10 |
+
"model_type": "aria",
|
| 11 |
+
"num_attention_heads": 64,
|
| 12 |
+
"num_hidden_layers": 16,
|
| 13 |
+
"torch_dtype": "float16",
|
| 14 |
+
"transformers_version": "4.45.0",
|
| 15 |
+
"use_cache": true,
|
| 16 |
+
"vocab_size": 17731,
|
| 17 |
+
"auto_map": {
|
| 18 |
+
"AutoConfig": "configuration_aria.AriaConfig",
|
| 19 |
+
"AutoModel": "modeling_aria.AriaModel",
|
| 20 |
+
"AutoModelForCausalLM": "modeling_aria.AriaForCausalLM"
|
| 21 |
+
}
|
| 22 |
+
}
|
configuration_aria.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class AriaConfig(PretrainedConfig):
|
| 5 |
+
model_type = "aria"
|
| 6 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 7 |
+
|
| 8 |
+
def __init__(
|
| 9 |
+
self,
|
| 10 |
+
vocab_size: int = 17731,
|
| 11 |
+
hidden_size: int = 1536,
|
| 12 |
+
num_hidden_layers: int = 16,
|
| 13 |
+
num_attention_heads: int = 64,
|
| 14 |
+
intermediate_size: int = 6144,
|
| 15 |
+
max_position_embeddings: int = 8192,
|
| 16 |
+
use_cache: bool = True,
|
| 17 |
+
bos_token_id: int = 0,
|
| 18 |
+
eos_token_id: int = 1,
|
| 19 |
+
tie_word_embeddings: bool = False,
|
| 20 |
+
output_attentions: bool = False,
|
| 21 |
+
output_hidden_states: bool = False,
|
| 22 |
+
return_dict: bool = False,
|
| 23 |
+
**kwargs,
|
| 24 |
+
):
|
| 25 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
| 26 |
+
self.vocab_size = vocab_size
|
| 27 |
+
self.hidden_size = hidden_size
|
| 28 |
+
self.num_hidden_layers = num_hidden_layers
|
| 29 |
+
self.num_attention_heads = num_attention_heads
|
| 30 |
+
self.intermediate_size = intermediate_size
|
| 31 |
+
self.max_position_embeddings = max_position_embeddings
|
| 32 |
+
self.use_cache = use_cache
|
| 33 |
+
self.tie_word_embeddings = tie_word_embeddings
|
| 34 |
+
self.output_attentions = output_attentions
|
| 35 |
+
self.output_hidden_states = output_hidden_states
|
| 36 |
+
self.return_dict = return_dict
|
| 37 |
+
|
| 38 |
+
if self.intermediate_size % self.hidden_size != 0:
|
| 39 |
+
raise ValueError("The intermediate size needs to be divisible by hidden size.")
|
| 40 |
+
|
| 41 |
+
if self.hidden_size % self.num_attention_heads != 0:
|
| 42 |
+
raise ValueError("The hidden size needs to be divisible by the number of attention heads.")
|
| 43 |
+
|
| 44 |
+
@property
|
| 45 |
+
def ff_mult(self):
|
| 46 |
+
return self.intermediate_size // self.hidden_size
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
__all__ = ["AriaConfig"]
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4f5d4944e77734679a3e2cfe651021589c3e2e07b2f1c2f67ec388ef1c74d88
|
| 3 |
+
size 2634219792
|
modeling_aria.py
ADDED
|
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This is lightly adapted from https://github.com/EleutherAI/aria/blob/main/aria/model.py
|
| 2 |
+
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Optional, Union, Tuple, List
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
|
| 9 |
+
from torch import nn as nn
|
| 10 |
+
from torch.nn import functional as F, CrossEntropyLoss
|
| 11 |
+
|
| 12 |
+
from transformers import Cache, DynamicCache, StaticCache
|
| 13 |
+
from transformers.utils import logging
|
| 14 |
+
from transformers.generation import GenerationMixin
|
| 15 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 16 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 17 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 18 |
+
|
| 19 |
+
from .configuration_aria import AriaConfig
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
logger = logging.get_logger(__name__)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class AriaPreTrainedModel(PreTrainedModel):
|
| 26 |
+
config_class = AriaConfig
|
| 27 |
+
base_model_prefix = "aria"
|
| 28 |
+
supports_gradient_checkpointing = True
|
| 29 |
+
_no_split_modules = ["AriaBlock"]
|
| 30 |
+
_skip_keys_device_placement = "past_key_values"
|
| 31 |
+
_supports_flash_attn_2 = False
|
| 32 |
+
_supports_cache_class = True
|
| 33 |
+
_supports_quantized_cache = True
|
| 34 |
+
_supports_static_cache = True
|
| 35 |
+
_supports_sdpa = True
|
| 36 |
+
_supports_flex_attn = False
|
| 37 |
+
|
| 38 |
+
def _init_weights(self, module):
|
| 39 |
+
if isinstance(module, nn.Linear):
|
| 40 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 41 |
+
if module.bias is not None:
|
| 42 |
+
module.bias.data.zero_()
|
| 43 |
+
elif isinstance(module, nn.Embedding):
|
| 44 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 45 |
+
if module.padding_idx is not None:
|
| 46 |
+
module.weight.data[module.padding_idx].zero_()
|
| 47 |
+
elif isinstance(module, nn.LayerNorm):
|
| 48 |
+
module.bias.data.zero_()
|
| 49 |
+
module.weight.data.fill_(1.0)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class AriaBlock(nn.Module):
|
| 53 |
+
def __init__(self, model_config: AriaConfig, layer_idx: int):
|
| 54 |
+
super().__init__()
|
| 55 |
+
|
| 56 |
+
self.drop_p = 0.0
|
| 57 |
+
self.n_heads = model_config.num_attention_heads
|
| 58 |
+
self.d_model = model_config.hidden_size
|
| 59 |
+
self.d_head = model_config.hidden_size // model_config.num_attention_heads
|
| 60 |
+
self.max_seq_len = model_config.max_position_embeddings
|
| 61 |
+
self.layer_idx = layer_idx
|
| 62 |
+
|
| 63 |
+
# Attention
|
| 64 |
+
self.mixed_qkv = nn.Linear(
|
| 65 |
+
in_features=self.d_model,
|
| 66 |
+
out_features=3 * self.d_model,
|
| 67 |
+
bias=False,
|
| 68 |
+
)
|
| 69 |
+
self.att_proj_linear = nn.Linear(
|
| 70 |
+
in_features=self.d_model,
|
| 71 |
+
out_features=self.d_model,
|
| 72 |
+
bias=False,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
# FF Layer
|
| 76 |
+
self.ff_gate_proj = nn.Linear(
|
| 77 |
+
in_features=self.d_model,
|
| 78 |
+
out_features=self.d_model * model_config.ff_mult,
|
| 79 |
+
bias=False,
|
| 80 |
+
)
|
| 81 |
+
self.ff_up_proj = nn.Linear(
|
| 82 |
+
in_features=self.d_model,
|
| 83 |
+
out_features=self.d_model * model_config.ff_mult,
|
| 84 |
+
bias=False,
|
| 85 |
+
)
|
| 86 |
+
self.ff_down_proj = nn.Linear(
|
| 87 |
+
in_features=self.d_model * model_config.ff_mult,
|
| 88 |
+
out_features=self.d_model,
|
| 89 |
+
bias=False,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
# Pre layer norms
|
| 93 |
+
self.norm1 = nn.LayerNorm(self.d_model)
|
| 94 |
+
self.norm2 = nn.LayerNorm(self.d_model)
|
| 95 |
+
|
| 96 |
+
def forward(
|
| 97 |
+
self,
|
| 98 |
+
x: torch.Tensor,
|
| 99 |
+
attention_mask: torch.Tensor,
|
| 100 |
+
freqs_cis: torch.Tensor,
|
| 101 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 102 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
|
| 103 |
+
use_cache: Optional[bool] = None,
|
| 104 |
+
output_attentions: Optional[bool] = None,
|
| 105 |
+
output_hidden_states: Optional[bool] = None,
|
| 106 |
+
return_dict: Optional[bool] = None,
|
| 107 |
+
cache_position: Optional[torch.Tensor] = None
|
| 108 |
+
):
|
| 109 |
+
attn_output, attn_weights, present = self._att_block(self.norm1(x), attention_mask, freqs_cis,
|
| 110 |
+
past_key_values=past_key_values,
|
| 111 |
+
use_cache=use_cache,
|
| 112 |
+
output_attentions=output_attentions,
|
| 113 |
+
cache_position=cache_position)
|
| 114 |
+
|
| 115 |
+
x = x + attn_output
|
| 116 |
+
x = x + self._ff_block(self.norm2(x))
|
| 117 |
+
|
| 118 |
+
outputs = (x, present)
|
| 119 |
+
if use_cache:
|
| 120 |
+
outputs = (x, present, attn_weights)
|
| 121 |
+
else:
|
| 122 |
+
outputs = (x, attn_weights)
|
| 123 |
+
|
| 124 |
+
return outputs
|
| 125 |
+
|
| 126 |
+
def _att_block(
|
| 127 |
+
self,
|
| 128 |
+
x: torch.Tensor,
|
| 129 |
+
attention_mask: torch.Tensor,
|
| 130 |
+
freqs_cis: torch.Tensor,
|
| 131 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
|
| 132 |
+
use_cache: Optional[bool] = None,
|
| 133 |
+
output_attentions: Optional[bool] = None,
|
| 134 |
+
cache_position: Optional[torch.Tensor] = None
|
| 135 |
+
):
|
| 136 |
+
batch_size, seq_len, _ = x.shape
|
| 137 |
+
mixed_qkv = self.mixed_qkv(x)
|
| 138 |
+
xq, xk, xv = mixed_qkv.chunk(3, -1)
|
| 139 |
+
|
| 140 |
+
# Reshape for rotary embeddings
|
| 141 |
+
# Need contiguous for q, k since in-place RoPE cannot be applied on a view
|
| 142 |
+
xq = xq.reshape(
|
| 143 |
+
batch_size, seq_len, self.n_heads, self.d_head
|
| 144 |
+
).contiguous()
|
| 145 |
+
xk = xk.reshape(
|
| 146 |
+
batch_size, seq_len, self.n_heads, self.d_head
|
| 147 |
+
).contiguous()
|
| 148 |
+
xv = xv.view(batch_size, seq_len, self.n_heads, self.d_head)
|
| 149 |
+
|
| 150 |
+
# apply_rotary_post_emb expects: (b_sz, s_len, n_head, d_head)
|
| 151 |
+
xq = apply_rotary_emb(xq, freqs_cis)
|
| 152 |
+
xk = apply_rotary_emb(xk, freqs_cis)
|
| 153 |
+
xq, xk, xv = map(lambda t: t.transpose(1, 2), (xq, xk, xv))
|
| 154 |
+
|
| 155 |
+
if past_key_values is not None:
|
| 156 |
+
cache_kwargs = {
|
| 157 |
+
#"sin": sin,
|
| 158 |
+
#"cos": cos,
|
| 159 |
+
#"partial_rotation_size": self.rotary_ndims,
|
| 160 |
+
"cache_position": cache_position,
|
| 161 |
+
}
|
| 162 |
+
xk, xv = past_key_values.update(xk, xv, self.layer_idx, cache_kwargs)
|
| 163 |
+
# scaled_dot_product_attention expects: (b_sz, n_head, s_len, d_head)
|
| 164 |
+
att = F.scaled_dot_product_attention(
|
| 165 |
+
query=xq,
|
| 166 |
+
key=xk,
|
| 167 |
+
value=xv,
|
| 168 |
+
attn_mask=attention_mask,
|
| 169 |
+
is_causal=True,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Reshape for out: (b_sz, s_len, n_head, d_head)
|
| 173 |
+
out = att.transpose(1, 2).contiguous()
|
| 174 |
+
out = out.view(batch_size, seq_len, self.n_heads * self.d_head)
|
| 175 |
+
|
| 176 |
+
if not output_attentions:
|
| 177 |
+
att = None
|
| 178 |
+
|
| 179 |
+
return self.att_proj_linear(out), att, past_key_values
|
| 180 |
+
|
| 181 |
+
def _ff_block(self, x: torch.Tensor):
|
| 182 |
+
|
| 183 |
+
return self.ff_down_proj(
|
| 184 |
+
F.silu(self.ff_gate_proj(x)) * self.ff_up_proj(x)
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class AriaModel(AriaPreTrainedModel):
|
| 189 |
+
"""Transformer decoder with no language model head.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
model_config (ModelConfig): Model config settings.
|
| 193 |
+
"""
|
| 194 |
+
|
| 195 |
+
def __init__(self, model_config: AriaConfig):
|
| 196 |
+
super().__init__(model_config)
|
| 197 |
+
self.model_config = model_config
|
| 198 |
+
self.freqs_cis = None
|
| 199 |
+
|
| 200 |
+
self.tok_embeddings = nn.Embedding(
|
| 201 |
+
num_embeddings=model_config.vocab_size,
|
| 202 |
+
embedding_dim=model_config.hidden_size,
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
self.out_layer_norm = nn.LayerNorm(model_config.hidden_size)
|
| 206 |
+
self.encode_layers = nn.ModuleList()
|
| 207 |
+
for i in range(model_config.num_hidden_layers):
|
| 208 |
+
self.encode_layers.append(AriaBlock(model_config, i))
|
| 209 |
+
|
| 210 |
+
self.gradient_checkpointing = False
|
| 211 |
+
self.post_init()
|
| 212 |
+
|
| 213 |
+
def forward(
|
| 214 |
+
self,
|
| 215 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 216 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 217 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 218 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 219 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
|
| 220 |
+
use_cache: Optional[bool] = None,
|
| 221 |
+
output_attentions: Optional[bool] = None,
|
| 222 |
+
output_hidden_states: Optional[bool] = None,
|
| 223 |
+
return_dict: Optional[bool] = None,
|
| 224 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 225 |
+
):
|
| 226 |
+
"""Forward pass of Transformer.
|
| 227 |
+
|
| 228 |
+
Args:
|
| 229 |
+
src (torch.tensor): Input to encoder block, of shape (batch_size,
|
| 230 |
+
seq_len, d_model).
|
| 231 |
+
attn_mask (Optional[torch.tensor]): Attention mask of shape
|
| 232 |
+
(batch_size, seq_len). Defaults to None.
|
| 233 |
+
past_kv (Optional[list[KVCache]]): a list of kv caches. The list index
|
| 234 |
+
corresponds to the layer index.
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
torch.tensor: Model outputs with shape (batch_size, seq_len,
|
| 238 |
+
d_model).
|
| 239 |
+
"""
|
| 240 |
+
output_attentions = output_attentions if output_attentions is not None else self.model_config.output_attentions
|
| 241 |
+
output_hidden_states = (
|
| 242 |
+
output_hidden_states if output_hidden_states is not None else self.model_config.output_hidden_states
|
| 243 |
+
)
|
| 244 |
+
return_dict = return_dict if return_dict is not None else self.model_config.use_return_dict
|
| 245 |
+
use_cache = use_cache if use_cache is not None else self.model_config.use_cache
|
| 246 |
+
|
| 247 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 248 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 249 |
+
|
| 250 |
+
if self.gradient_checkpointing and self.training:
|
| 251 |
+
if use_cache:
|
| 252 |
+
logger.warning_once(
|
| 253 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 254 |
+
)
|
| 255 |
+
use_cache = False
|
| 256 |
+
|
| 257 |
+
if inputs_embeds is None:
|
| 258 |
+
inputs_embeds = self.tok_embeddings(input_ids)
|
| 259 |
+
|
| 260 |
+
return_legacy_cache = False
|
| 261 |
+
if use_cache and not isinstance(past_key_values, Cache):
|
| 262 |
+
return_legacy_cache = True
|
| 263 |
+
if past_key_values is None:
|
| 264 |
+
past_key_values = DynamicCache()
|
| 265 |
+
else:
|
| 266 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 267 |
+
logger.warning_once(
|
| 268 |
+
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
|
| 269 |
+
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
|
| 270 |
+
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
seq_length = inputs_embeds.shape[1]
|
| 274 |
+
if cache_position is None:
|
| 275 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 276 |
+
cache_position = torch.arange(past_seen_tokens, past_seen_tokens + seq_length, device=inputs_embeds.device)
|
| 277 |
+
|
| 278 |
+
if position_ids is None:
|
| 279 |
+
position_ids = cache_position.unsqueeze(0)
|
| 280 |
+
hidden_states = inputs_embeds
|
| 281 |
+
|
| 282 |
+
causal_mask = self._update_causal_mask(
|
| 283 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
if self.freqs_cis is None:
|
| 287 |
+
self.freqs_cis = precompute_freqs_cis(
|
| 288 |
+
seq_len=self.model_config.max_position_embeddings,
|
| 289 |
+
n_elem=self.model_config.hidden_size // self.model_config.num_attention_heads,
|
| 290 |
+
base=500000,
|
| 291 |
+
dtype=hidden_states.dtype,
|
| 292 |
+
).to(input_ids.device)
|
| 293 |
+
freqs_cis = self.freqs_cis[: input_ids.shape[1]]
|
| 294 |
+
|
| 295 |
+
kwargs = {
|
| 296 |
+
"position_ids": position_ids,
|
| 297 |
+
"past_key_values": past_key_values,
|
| 298 |
+
"use_cache": use_cache,
|
| 299 |
+
"output_attentions": output_attentions,
|
| 300 |
+
"output_hidden_states": output_hidden_states,
|
| 301 |
+
"return_dict": return_dict,
|
| 302 |
+
"cache_position": cache_position,
|
| 303 |
+
}
|
| 304 |
+
next_decoder_cache = None
|
| 305 |
+
if self.gradient_checkpointing:
|
| 306 |
+
for layer in self.encode_layers:
|
| 307 |
+
|
| 308 |
+
def create_custom_forward(module):
|
| 309 |
+
def custom_forward(*args):
|
| 310 |
+
return module(*args)[0]
|
| 311 |
+
|
| 312 |
+
return custom_forward
|
| 313 |
+
|
| 314 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 315 |
+
create_custom_forward(layer),
|
| 316 |
+
hidden_states,
|
| 317 |
+
causal_mask,
|
| 318 |
+
freqs_cis,
|
| 319 |
+
**kwargs,
|
| 320 |
+
preserve_rng_state=True,
|
| 321 |
+
use_reentrant=True,
|
| 322 |
+
)
|
| 323 |
+
else:
|
| 324 |
+
all_attentions = () if output_attentions else None
|
| 325 |
+
all_hidden_states = () if output_hidden_states else None
|
| 326 |
+
for layer in self.encode_layers:
|
| 327 |
+
if output_hidden_states:
|
| 328 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 329 |
+
outputs = layer(hidden_states, causal_mask, freqs_cis=freqs_cis, **kwargs)
|
| 330 |
+
hidden_states = outputs[0]
|
| 331 |
+
if use_cache is True:
|
| 332 |
+
next_decoder_cache = outputs[1]
|
| 333 |
+
if output_attentions:
|
| 334 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
| 335 |
+
if output_hidden_states:
|
| 336 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 337 |
+
|
| 338 |
+
hidden_states = self.out_layer_norm(hidden_states)
|
| 339 |
+
next_cache = next_decoder_cache if use_cache else None
|
| 340 |
+
|
| 341 |
+
if return_legacy_cache:
|
| 342 |
+
next_cache = next_cache.to_legacy_cache()
|
| 343 |
+
|
| 344 |
+
if not return_dict:
|
| 345 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attentions] if v is not None)
|
| 346 |
+
|
| 347 |
+
return BaseModelOutputWithPast(
|
| 348 |
+
last_hidden_state=hidden_states,
|
| 349 |
+
past_key_values=next_cache,
|
| 350 |
+
hidden_states=all_hidden_states,
|
| 351 |
+
attentions=all_attentions,
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
def _update_causal_mask(
|
| 355 |
+
self,
|
| 356 |
+
attention_mask: torch.Tensor,
|
| 357 |
+
input_tensor: torch.Tensor,
|
| 358 |
+
cache_position: torch.Tensor,
|
| 359 |
+
past_key_values: Cache,
|
| 360 |
+
output_attentions: bool,
|
| 361 |
+
):
|
| 362 |
+
if self.model_config._attn_implementation == "flash_attention_2":
|
| 363 |
+
if attention_mask is not None and (attention_mask == 0.0).any():
|
| 364 |
+
return attention_mask
|
| 365 |
+
return None
|
| 366 |
+
|
| 367 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 368 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 369 |
+
# to infer the attention mask.
|
| 370 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 371 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 372 |
+
|
| 373 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 374 |
+
if self.model_config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 375 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 376 |
+
attention_mask,
|
| 377 |
+
inputs_embeds=input_tensor,
|
| 378 |
+
past_key_values_length=past_seen_tokens,
|
| 379 |
+
is_training=self.training,
|
| 380 |
+
):
|
| 381 |
+
return None
|
| 382 |
+
|
| 383 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 384 |
+
sequence_length = input_tensor.shape[1]
|
| 385 |
+
if using_static_cache:
|
| 386 |
+
target_length = past_key_values.get_max_cache_shape()
|
| 387 |
+
else:
|
| 388 |
+
target_length = (
|
| 389 |
+
attention_mask.shape[-1]
|
| 390 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 391 |
+
else past_seen_tokens + sequence_length + 1
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 395 |
+
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
|
| 396 |
+
attention_mask,
|
| 397 |
+
sequence_length=sequence_length,
|
| 398 |
+
target_length=target_length,
|
| 399 |
+
dtype=dtype,
|
| 400 |
+
device=device,
|
| 401 |
+
cache_position=cache_position,
|
| 402 |
+
batch_size=input_tensor.shape[0],
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
if (
|
| 406 |
+
self.model_config._attn_implementation == "sdpa"
|
| 407 |
+
and attention_mask is not None
|
| 408 |
+
and attention_mask.device.type == "cuda"
|
| 409 |
+
and not output_attentions
|
| 410 |
+
):
|
| 411 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 412 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 413 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 414 |
+
min_dtype = torch.finfo(dtype).min
|
| 415 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 416 |
+
|
| 417 |
+
return causal_mask
|
| 418 |
+
|
| 419 |
+
@staticmethod
|
| 420 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
|
| 421 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 422 |
+
attention_mask: torch.Tensor,
|
| 423 |
+
sequence_length: int,
|
| 424 |
+
target_length: int,
|
| 425 |
+
dtype: torch.dtype,
|
| 426 |
+
device: torch.device,
|
| 427 |
+
cache_position: torch.Tensor,
|
| 428 |
+
batch_size: int,
|
| 429 |
+
**kwargs,
|
| 430 |
+
):
|
| 431 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 432 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 433 |
+
causal_mask = attention_mask
|
| 434 |
+
else:
|
| 435 |
+
min_dtype = torch.finfo(dtype).min
|
| 436 |
+
causal_mask = torch.full(
|
| 437 |
+
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
|
| 438 |
+
)
|
| 439 |
+
if sequence_length != 1:
|
| 440 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 441 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 442 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 443 |
+
if attention_mask is not None:
|
| 444 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 445 |
+
mask_length = attention_mask.shape[-1]
|
| 446 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 447 |
+
padding_mask = padding_mask == 0
|
| 448 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 449 |
+
padding_mask, min_dtype
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
return causal_mask
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
class AriaForCausalLM(AriaPreTrainedModel, GenerationMixin):
|
| 456 |
+
"""Transformer decoder with head for language modelling.
|
| 457 |
+
|
| 458 |
+
Args:
|
| 459 |
+
model_config (ModelConfig): Model config settings.
|
| 460 |
+
"""
|
| 461 |
+
|
| 462 |
+
def __init__(self, model_config: AriaConfig):
|
| 463 |
+
super().__init__(model_config)
|
| 464 |
+
self.model_config = model_config
|
| 465 |
+
self.max_seq_len = model_config.max_position_embeddings
|
| 466 |
+
self.model = AriaModel(model_config)
|
| 467 |
+
self.lm_head = nn.Linear(
|
| 468 |
+
model_config.hidden_size, model_config.vocab_size, bias=False
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
def forward(
|
| 472 |
+
self,
|
| 473 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 474 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 475 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 476 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 477 |
+
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.FloatTensor]]]] = None,
|
| 478 |
+
labels: Optional[torch.Tensor] = None,
|
| 479 |
+
use_cache: Optional[bool] = None,
|
| 480 |
+
output_attentions: Optional[bool] = None,
|
| 481 |
+
output_hidden_states: Optional[bool] = None,
|
| 482 |
+
return_dict: Optional[bool] = None,
|
| 483 |
+
cache_position: Optional[torch.Tensor] = None,
|
| 484 |
+
):
|
| 485 |
+
"""Forward pass of Transformer decoder with LM head."""
|
| 486 |
+
return_dict = return_dict if return_dict is not None else self.model_config.use_return_dict
|
| 487 |
+
outputs = self.model(
|
| 488 |
+
input_ids,
|
| 489 |
+
attention_mask=attention_mask,
|
| 490 |
+
position_ids=position_ids,
|
| 491 |
+
inputs_embeds=inputs_embeds,
|
| 492 |
+
past_key_values=past_key_values,
|
| 493 |
+
use_cache=use_cache,
|
| 494 |
+
output_attentions=output_attentions,
|
| 495 |
+
output_hidden_states=output_hidden_states,
|
| 496 |
+
return_dict=return_dict,
|
| 497 |
+
cache_position=cache_position,
|
| 498 |
+
)
|
| 499 |
+
hidden = outputs[0]
|
| 500 |
+
lm_logits = self.lm_head(hidden)
|
| 501 |
+
|
| 502 |
+
lm_loss = None
|
| 503 |
+
if labels is not None:
|
| 504 |
+
# move labels to correct device to enable model parallelism
|
| 505 |
+
labels = labels.to(lm_logits.device)
|
| 506 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
| 507 |
+
shift_logits = lm_logits[:, :-1, :].contiguous()
|
| 508 |
+
labels = labels[:, 1:].contiguous()
|
| 509 |
+
loss_fct = CrossEntropyLoss()
|
| 510 |
+
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
| 511 |
+
|
| 512 |
+
if not return_dict:
|
| 513 |
+
output = (lm_logits,) + outputs[1:]
|
| 514 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
| 515 |
+
|
| 516 |
+
return CausalLMOutputWithPast(
|
| 517 |
+
loss=lm_loss,
|
| 518 |
+
logits=lm_logits,
|
| 519 |
+
past_key_values=outputs.past_key_values,
|
| 520 |
+
hidden_states=outputs.hidden_states,
|
| 521 |
+
attentions=outputs.attentions,
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
|
| 525 |
+
def precompute_freqs_cis(
|
| 526 |
+
seq_len: int,
|
| 527 |
+
n_elem: int,
|
| 528 |
+
base: int = 500000,
|
| 529 |
+
dtype: torch.dtype = torch.bfloat16,
|
| 530 |
+
):
|
| 531 |
+
freqs = 1.0 / (
|
| 532 |
+
base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)
|
| 533 |
+
)
|
| 534 |
+
t = torch.arange(seq_len, device=freqs.device)
|
| 535 |
+
freqs = torch.outer(t, freqs)
|
| 536 |
+
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
| 537 |
+
cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
| 538 |
+
|
| 539 |
+
return cache.to(dtype=dtype)
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
@torch.jit.script
|
| 543 |
+
def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
|
| 544 |
+
"""
|
| 545 |
+
In-place RoPE. Credits to Katherine Crowson:
|
| 546 |
+
x shape (b_sz, s_len, n_head, d_head).
|
| 547 |
+
cos, sin shape (s_len, d_head // 2).
|
| 548 |
+
"""
|
| 549 |
+
|
| 550 |
+
d = x.shape[-1] // 2
|
| 551 |
+
cos = freqs_cis[..., 0][None, :, None]
|
| 552 |
+
sin = freqs_cis[..., 1][None, :, None]
|
| 553 |
+
x1, x2 = x[..., :d], x[..., d : d * 2]
|
| 554 |
+
tmp = x1.clone()
|
| 555 |
+
x1.mul_(cos).addcmul_(x2, sin, value=-1)
|
| 556 |
+
x2.mul_(cos).addcmul_(tmp, sin, value=1)
|
| 557 |
+
return x
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
__all__ = [
|
| 561 |
+
"AriaForCausalLM",
|
| 562 |
+
"AriaBlock",
|
| 563 |
+
"AriaModel",
|
| 564 |
+
"AriaPreTrainedModel",
|
| 565 |
+
]
|