# coding=utf-8 # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers.configuration_utils import PretrainedConfig from transformers.modeling_rope_utils import rope_config_validation from transformers.configuration_utils import layer_type_validation from transformers.utils import logging logger = logging.get_logger(__name__) class AfmoeConfig(PretrainedConfig): """ n_group (`int`, *optional*, defaults to 1): Number of groups for routed experts. topk_group (`int`, *optional*, defaults to 1): Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups). """ model_type = "afmoe" base_model_pp_plan = { "embed_tokens": (["input_ids"], ["inputs_embeds"]), "layers": (["hidden_states", "attention_mask"], ["hidden_states"]), "norm": (["hidden_states"], ["hidden_states"]), } def __init__( self, num_hidden_layers: int = 32, vocab_size: int = 200192, hidden_size: int = 2048, intermediate_size: int = 6144, moe_intermediate_size=1408, num_dense_layers=1, num_attention_heads=16, num_key_value_heads=None, head_dim=128, hidden_act="silu", max_position_embeddings=16384, initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, tie_word_embeddings=False, rope_theta=10000.0, rope_scaling=None, num_experts=64, num_experts_per_tok=6, num_shared_experts=2, num_expert_groups=1, num_limited_groups=1, score_func="sigmoid", route_norm=True, route_scale=1.0, global_attn_every_n_layers=4, sliding_window=1024, mup_enabled=False, layer_types=None, attention_dropout: float = 0.0, n_group: int = 1, topk_group: int = 1, **kwargs, ): self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_dense_layers = num_dense_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling # MoE specific self.moe_intermediate_size = moe_intermediate_size self.num_experts_per_tok = num_experts_per_tok self.n_group = n_group self.topk_group = topk_group self.num_experts = num_experts self.num_shared_experts = num_shared_experts self.num_expert_groups = num_expert_groups self.num_limited_groups = num_limited_groups self.score_func = score_func self.route_norm = route_norm self.route_scale = route_scale # Attention specific self.attention_dropout = attention_dropout self.global_attn_every_n_layers = global_attn_every_n_layers self.sliding_window = sliding_window self.layer_types = layer_types if self.layer_types is None: self.layer_types = [ "sliding_attention" if bool((i + 1) % global_attn_every_n_layers) else "full_attention" for i in range(self.num_hidden_layers) ] layer_type_validation(self.layer_types) # muP specific self.mup_enabled = mup_enabled if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads # Validate rope configs if self.rope_scaling is not None and "type" in self.rope_scaling: self.rope_scaling["rope_type"] = self.rope_scaling["type"] rope_config_validation(self) super().__init__( tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["AfmoeConfig"]