--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: dinov2-base-finetuned-dermnet-lr3-5-0.05wd-csr results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7958001448225923 --- # dinov2-base-finetuned-dermnet-lr3-5-0.05wd-csr This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8119 - Accuracy: 0.7958 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.7488 | 1.0 | 98 | 2.5158 | 0.3722 | | 1.9402 | 2.0 | 196 | 1.7710 | 0.5170 | | 1.4938 | 3.0 | 294 | 1.4939 | 0.5996 | | 1.1226 | 4.0 | 392 | 1.3168 | 0.6256 | | 0.9329 | 5.0 | 490 | 1.1906 | 0.6705 | | 0.8039 | 6.0 | 588 | 1.0882 | 0.7067 | | 0.6426 | 7.0 | 686 | 1.1061 | 0.6930 | | 0.5777 | 8.0 | 784 | 1.0133 | 0.7227 | | 0.477 | 9.0 | 882 | 0.9681 | 0.7364 | | 0.3961 | 10.0 | 980 | 0.9402 | 0.7581 | | 0.3451 | 11.0 | 1078 | 0.9311 | 0.7509 | | 0.337 | 12.0 | 1176 | 0.8897 | 0.7661 | | 0.2348 | 13.0 | 1274 | 0.8616 | 0.7762 | | 0.1992 | 14.0 | 1372 | 0.8241 | 0.7951 | | 0.182 | 15.0 | 1470 | 0.8312 | 0.7878 | | 0.1556 | 16.0 | 1568 | 0.8245 | 0.7857 | | 0.1516 | 17.0 | 1666 | 0.8170 | 0.7958 | | 0.1569 | 18.0 | 1764 | 0.8202 | 0.7878 | | 0.1364 | 19.0 | 1862 | 0.8117 | 0.7951 | | 0.1427 | 19.8021 | 1940 | 0.8119 | 0.7958 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1