File size: 5,820 Bytes
d161a9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
base_model:
- mistralai/Mistral-Nemo-Base-2407
license: apache-2.0
tags:
- writing
- creative-writing
---
# Koto 22B (Pretrained)

Koto-22B-PT is a [depth-upscaled](https://arxiv.org/abs/2312.15166) version of Mistral-Nemo-Base-2407, healed and trained on almost a billion tokens of creative writing data.
## Usage
This model is not intended for use outside of raw text completion settings, such as cowriting. Instruct will *not* work. Multi-turn roleplay will *not* work.
It was trained at 32k, but as not all samples were this long, we expect that in the best case you can get ~16k effective context.
We found that 1.5-1.55 temperature and 0.05-0.1 min_p worked best, but YMMV!
## Datasets
Some of the data used to train this model includes:
- Most of [The Anarchist Library](https://theanarchistlibrary.org/), a repository for anarchist manifestos and writing (see [allura-org/the-anarchist-library](https://huggingface.co/datasets/allura-org/the-anarchist-library))
- A random sample of public domain books from Project Gutenberg
- Furry (anthro and feral) storytelling and smut
- A small subset of known high-quality books and story data
## Acknowledgements
- thank you to [@takeshimaxfj](https://x.com/takeshimaxfj) on twitter for drawing the art used in the model card!
- thank you very much to [mango/deltavector](https://huggingface.co/Delta-Vector) for providing the compute used to train this model
- thanks to curse for testing, ideas
- thanks to toasty for some data, ideas
- thanks to everyone else in allura for moral support
ilya <3
## Technical Appendix
<details>
### Training Notes
This model was trained over the course of ~14 hours on an 8xB200 node. We used 8-bit AdamW and the REX LR scheduler, as well as both gradient clipping and weight decay for regularization.
There *was* a very odd loss spike ~60% of the way through training, but it recovered and the model seems fine? So? Eh? If it works it works :3
### WandB
%3C%2Fspan%3E
### Finetuning Notes
This model has had ChatML tokens already added if you prefer to tune using that chat format. Please do not readd them to maintain the vocab size for (possible) usage on places like Featherless
### Axolotl Config
```yaml
## model
base_model: allura-forge/nemo-upscaled-2
#tokenizer_use_mistral_common: true
## qlora COPE!!!
load_in_8bit: false
load_in_4bit: false
strict: false
## data
datasets:
datasets:
- path: estrogen/bookscpt2
type: completion
field: text
shuffle_merged_datasets: true
dataset_prepared_path: dataset_preparedss
val_set_size: 0.0
output_dir: ./Pretrain
## Liger + CCE
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_layer_norm: true
liger_glu_activation: true
liger_fused_linear_cross_entropy: false
cut_cross_entropy: true
## CTX settings
sequence_len: 32768
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
## max grad norm
max_grad_norm: 1.0
## WandB
wandb_project: NeMo-Upscale
wandb_entity:
wandb_watch:
wandb_name: Pretrain-22B
wandb_log_model:
## hoe params
gradient_accumulation_steps: 4
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: rex
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 50
saves_per_epoch: 2
debug:
deepspeed: ./deepspeed_configs/zero3_bf16.json
weight_decay: 0.0025
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
```
### Mergekit Config
```yaml
dtype: bfloat16
merge_method: passthrough
slices:
# untouched intro
- sources:
- layer_range: [0, 8]
model: mistralai/Mistral-Nemo-Base-2407
- sources:
- layer_range: [8, 12]
model: mistralai/Mistral-Nemo-Base-2407
# 8β16 baseline
- sources:
- layer_range: [8, 16]
model: mistralai/Mistral-Nemo-Base-2407
# 8β16 duplicate with projections nulled
- sources:
- layer_range: [8, 16]
model: mistralai/Mistral-Nemo-Base-2407
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
# 16β24 duplicate
- sources:
- layer_range: [16, 24]
model: mistralai/Mistral-Nemo-Base-2407
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
# 16β24 baseline
- sources:
- layer_range: [16, 24]
model: mistralai/Mistral-Nemo-Base-2407
# 16β24 duplicate
- sources:
- layer_range: [16, 24]
model: mistralai/Mistral-Nemo-Base-2407
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
# 24β32 baseline
- sources:
- layer_range: [24, 32]
model: mistralai/Mistral-Nemo-Base-2407
# 24β32 duplicate
- sources:
- layer_range: [24, 32]
model: mistralai/Mistral-Nemo-Base-2407
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
# untouched tail
- sources:
- layer_range: [32, 40]
model: mistralai/Mistral-Nemo-Base-2407
```
</details> |