baileyk commited on
Commit
04f5e7c
·
verified ·
1 Parent(s): 7db0e9e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -54,8 +54,8 @@ pip install transformers>=4.57.0
54
  You can use OLMo with the standard HuggingFace transformers library:
55
  ```python
56
  from transformers import AutoModelForCausalLM, AutoTokenizer
57
- olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-RLZero-IF-7B")
58
- tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-RLZero-IF-7B")
59
  message = ["Language modeling is "]
60
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
61
  # optional verifying cuda
@@ -68,7 +68,7 @@ print(tokenizer.batch_decode(response, skip_special_tokens=True)[0])
68
 
69
  For faster performance, you can quantize the model using the following method:
70
  ```python
71
- AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-RLZero-IF-7B",
72
  torch_dtype=torch.float16,
73
  load_in_8bit=True) # Requires bitsandbytes
74
  ```
 
54
  You can use OLMo with the standard HuggingFace transformers library:
55
  ```python
56
  from transformers import AutoModelForCausalLM, AutoTokenizer
57
+ olmo = AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-7B-RL-Zero-IF")
58
+ tokenizer = AutoTokenizer.from_pretrained("allenai/Olmo-3-7B-RL-Zero-IF")
59
  message = ["Language modeling is "]
60
  inputs = tokenizer(message, return_tensors='pt', return_token_type_ids=False)
61
  # optional verifying cuda
 
68
 
69
  For faster performance, you can quantize the model using the following method:
70
  ```python
71
+ AutoModelForCausalLM.from_pretrained("allenai/Olmo-3-7B-RL-Zero-IF",
72
  torch_dtype=torch.float16,
73
  load_in_8bit=True) # Requires bitsandbytes
74
  ```