--- license: apache-2.0 --- # NTPP: Generative Speech Language Modeling for Dual-Channel Spoken Dialogue via Next-Token-Pair Prediction > **Authors: Qichao Wang\*, Ziqiao Meng\*, Wenqian Cui, Yifei Zhang, Pengcheng Wu, Bingzhe Wu, Irwin King, Liang Chen, Peilin Zhao†** [![arXiv](https://img.shields.io/badge/arXiv-2409.06666-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2506.00975) [![code](https://img.shields.io/badge/Github-Code-keygen.svg?logo=github)](https://github.com/Chaos96/NTPP) [![model](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging_Face-Model-blue.svg)](https://huggingface.co/aigc-x/NTPP) [![Replicate](https://replicate.com/ictnlp/llama-omni/badge)](https://audio-3059.pages.dev/) Key features: - Pre-training: Transform single-channel audio into discrete tokens for next-token prediction - SFT: Novel "next-token-pair prediction" objective for natural conversation comprehension - Result: More natural and fluid spoken interactions compared to baseline approaches Parrot ## Installation ```bash git clone https://github.com/Chaos96/NTPP.git cd parrot python -m venv venv source venv/bin/activate # On Windows, use `venv\Scripts\activate` pip install -r requirements.txt ``` ## Usage 1. Prepare audio data for pre-training and fine-tuning 2. Pre-train: `python pretrain.py --input_data path/to/single_channel_data` 3. Fine-tune: `python finetune.py --input_data path/to/double_channel_data` 4. Inference: `python inference.py --input_audio path/to/input.wav`