--- license: apache-2.0 base_model: projecte-aina/roberta-base-ca-v2-cased-te tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 2404v6 results: [] --- # 2404v6 This model is a fine-tuned version of [projecte-aina/roberta-base-ca-v2-cased-te](https://huggingface.co/projecte-aina/roberta-base-ca-v2-cased-te) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5939 - Accuracy: 0.8445 - Precision: 0.8451 - Recall: 0.8445 - F1: 0.8445 - Ratio: 0.4790 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - lr_scheduler_warmup_steps: 4 - num_epochs: 2 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Ratio | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.5731 | 0.2597 | 10 | 0.5646 | 0.8613 | 0.8645 | 0.8613 | 0.8610 | 0.4538 | | 0.5515 | 0.5195 | 20 | 0.5569 | 0.8613 | 0.8626 | 0.8613 | 0.8612 | 0.4706 | | 0.5164 | 0.7792 | 30 | 0.6079 | 0.8277 | 0.8363 | 0.8277 | 0.8266 | 0.5798 | | 0.5641 | 1.0390 | 40 | 0.5728 | 0.8571 | 0.8608 | 0.8571 | 0.8568 | 0.4496 | | 0.4665 | 1.2987 | 50 | 0.5992 | 0.8403 | 0.8407 | 0.8403 | 0.8403 | 0.5168 | | 0.4632 | 1.5584 | 60 | 0.5990 | 0.8613 | 0.8634 | 0.8613 | 0.8611 | 0.4622 | | 0.4456 | 1.8182 | 70 | 0.5939 | 0.8445 | 0.8451 | 0.8445 | 0.8445 | 0.4790 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1