--- library_name: transformers license: apache-2.0 base_model: distilroberta-base tags: - generated_from_trainer metrics: - f1 model-index: - name: distilroberta-spam-classification results: [] --- # distilroberta-spam-classification This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5677 - F1: 0.9904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 12345 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 16 - num_epochs: 3 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.5716 | 1.0 | 118 | 0.5698 | 0.9851 | | 0.5672 | 2.0 | 236 | 0.5681 | 0.9904 | | 0.5693 | 3.0 | 354 | 0.5677 | 0.9904 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0