File size: 1,845 Bytes
0a17b8a
a80e2ab
0a17b8a
 
 
 
 
e4dace7
 
ced171b
e4dace7
ced171b
e4dace7
 
 
 
ced171b
e4dace7
 
 
93dfc90
e4dace7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a17b8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
base_model: caidas/swin2SR-classical-sr-x2-64
library_name: transformers.js
---

https://huggingface.co/caidas/swin2SR-classical-sr-x2-64 with ONNX weights to be compatible with Transformers.js.

## Usage (Transformers.js)

If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using:
```bash
npm i @huggingface/transformers
```

**Example:** Upscale an image with `Xenova/swin2SR-classical-sr-x2-64`.
```js
import { pipeline } from '@huggingface/transformers';

// Create image-to-image pipeline
const upscaler = await pipeline('image-to-image', 'Xenova/swin2SR-classical-sr-x2-64', {
    dtype: 'fp32', // Options: 'fp32', 'fp16', 'q8', 'q4'
});

// Upscale an image
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/butterfly.jpg';
const output = await upscaler(url);
// RawImage {
//   data: Uint8Array(786432) [ ... ],
//   width: 512,
//   height: 512,
//   channels: 3
// }

// (Optional) Save the upscaled image
output.save('upscaled.png');
```

<details>
  <summary>See example output</summary>

  Input image:
  
  ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b253b7ac5ecaae3d1efe0c%2FeqLyvsErNQvXAFDD2MylF.png%3C%2Fspan%3E)

  
  Output image:
  
  ![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F61b253b7ac5ecaae3d1efe0c%2F-SpyZeojGA9LIKkO-_cyY.png%3C%2Fspan%3E)

</details>

---

Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).