Commit
·
ec56309
1
Parent(s):
2d010c3
Initial upload of the model
Browse files- .gitignore +1 -0
- README.md +117 -0
- config.json +39 -0
- generation_config.json +7 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +298 -0
- modeling_llama_hydra.py +227 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +41 -0
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
.ipynb_checkpoints
|
README.md
ADDED
|
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: Unbabel/TowerInstruct-7B-v0.1
|
| 3 |
+
license: cc-by-nc-4.0
|
| 4 |
+
language:
|
| 5 |
+
- tt
|
| 6 |
+
- en
|
| 7 |
+
- de
|
| 8 |
+
- fr
|
| 9 |
+
- zh
|
| 10 |
+
- pt
|
| 11 |
+
- nl
|
| 12 |
+
- ru
|
| 13 |
+
- ko
|
| 14 |
+
- it
|
| 15 |
+
- es
|
| 16 |
+
tags:
|
| 17 |
+
- tweety
|
| 18 |
+
datasets:
|
| 19 |
+
- oscar-corpus/OSCAR-2301
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
<img align="right" src="https://huggingface.co/Tweeties/tweety-tatar-base-7b-2024-v1/resolve/main/TweetyTatar.png?download=true" alt="Tweety-Tatar-7B: A Tatar Large Language Model" width="20%">
|
| 23 |
+
|
| 24 |
+
# Tweety Tatar / Hydra-MT 7b / 2024-v1
|
| 25 |
+
|
| 26 |
+
## Model description
|
| 27 |
+
This model is our Hydra LLM for the [Tatar language](https://en.wikipedia.org/wiki/Tatar_language), converted from the [TowerInstruct-7b-v0.1](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1) model trained by Unbabel, via [our Hydra-Base model](https://huggingface.co/Tweeties/tweety-tatar-hydra-base-7b-2024-v1).
|
| 28 |
+
Hydra LLMs are trans-tokenized language models finetuned to produce output in a particular language, while accepting input encoded using either their own tokenizer, the one of their base model, or a mix of both.
|
| 29 |
+
This enables them to receive code-switched input in both their native language and other languages, which is an ideal setup for translation tasks, or retrieval-augmented generation (RAG) in cross-lingual scenarios (see [our Hydra-Base model](https://huggingface.co/Tweeties/tweety-tatar-hydra-base-7b-2024-v1)).
|
| 30 |
+
|
| 31 |
+
- **Developed by:** [François Remy](https://huggingface.co/FremyCompany) (UGent), [Alfiya Khabibullina](https://huggingface.co/justalphie) (BeCode), [et al.](#citation)
|
| 32 |
+
- **Funded by:** IDLab / GPULab
|
| 33 |
+
- **Model type:** Foundation model using the mistral architecture
|
| 34 |
+
- **Language(s) (NLP):** Tatar
|
| 35 |
+
- **License:** Creative Commons Attribution Non Commercial 4.0
|
| 36 |
+
|
| 37 |
+
## In-scope usage
|
| 38 |
+
This model can be used as-is or finetuned into a machine translation system from one of the 10 languages supported by TowerInstruct into the Tatar language.
|
| 39 |
+
This list of languages nobably includes English and Russian.
|
| 40 |
+
The model performs best when translating sentences or small paragraphs, and is not suited for document translation tasks.
|
| 41 |
+
This model should not be used in the reverse direction, to translate Tatar into English.
|
| 42 |
+
While the system is finetuned for translation, enabling beam search provides better results.
|
| 43 |
+
Take note of the non-commercial license imposed by Unbabel on the base model, which also applies to this model.
|
| 44 |
+
|
| 45 |
+
## Usage instructions
|
| 46 |
+
Using this model usually requires building the prompts by mixing tokens from two tokenizers, the original TowerInstruct tokenizer for input in the source language, and the new Tatar tokenizer for the prompt and output, as described in the examples below:
|
| 47 |
+
|
| 48 |
+
```py
|
| 49 |
+
import re
|
| 50 |
+
import torch
|
| 51 |
+
import torch.nn as nn
|
| 52 |
+
import transformers
|
| 53 |
+
|
| 54 |
+
MODEL_NAME = "Tweeties/tweety-tatar-hydra-mt-7b-2024-v1"
|
| 55 |
+
MAIN_TOKENIZER_NAME = "Tweeties/tweety-tatar-hydra-mt-7b-2024-v1"
|
| 56 |
+
UTIL_TOKENIZER_NAME = "Unbabel/TowerInstruct-7B-v0.1"
|
| 57 |
+
|
| 58 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 59 |
+
main_tokenizer = transformers.LlamaTokenizerFast.from_pretrained(MAIN_TOKENIZER_NAME)
|
| 60 |
+
util_tokenizer = transformers.LlamaTokenizerFast.from_pretrained(UTIL_TOKENIZER_NAME)
|
| 61 |
+
|
| 62 |
+
main_tokenizer_len = len(main_tokenizer)
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
### Machine Translation
|
| 66 |
+
|
| 67 |
+
```py
|
| 68 |
+
def translate_english_text(english_text: str) -> str:
|
| 69 |
+
|
| 70 |
+
# craft the input
|
| 71 |
+
input_ids = torch.concat([
|
| 72 |
+
main_tokenizer.encode(f"Түбәндәге текстны инглиз теленнән татар теленә тәрҗемә итегез:\n", return_tensors='pt'),
|
| 73 |
+
util_tokenizer.encode(f"{english_text}", add_special_tokens=False, return_tensors='pt') + torch.tensor([main_tokenizer_len]),
|
| 74 |
+
main_tokenizer.encode(f"\nТекстны татар теленә тәрҗемә итү:\n", add_special_tokens=False, return_tensors='pt')
|
| 75 |
+
], axis=1)
|
| 76 |
+
|
| 77 |
+
# prevent the model from repeating the prompt
|
| 78 |
+
prompt_starts = [
|
| 79 |
+
main_tokenizer.encode("Түбәндәге"),
|
| 80 |
+
main_tokenizer.encode("\nТүбәндәге")[2:],
|
| 81 |
+
main_tokenizer.encode("Текстны"),
|
| 82 |
+
main_tokenizer.encode("\nТекстны")[2:]
|
| 83 |
+
]
|
| 84 |
+
|
| 85 |
+
# genereate the output
|
| 86 |
+
model_inputs = {'input_ids':input_ids.to(model.device)}
|
| 87 |
+
model_outputs = model.generate(
|
| 88 |
+
**model_inputs,
|
| 89 |
+
max_new_tokens=128,
|
| 90 |
+
num_beams=8,
|
| 91 |
+
no_repeat_ngram_size=6,
|
| 92 |
+
early_stopping=False,
|
| 93 |
+
pad_token_id=main_tokenizer.eos_token_id,
|
| 94 |
+
eos_token_id=main_tokenizer.convert_tokens_to_ids(['<0x0A>','</s>']),
|
| 95 |
+
bad_words_ids=prompt_starts
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# decode the output
|
| 99 |
+
return (main_tokenizer.decode(model_outputs[0][input_ids.shape[1]:]))
|
| 100 |
+
|
| 101 |
+
translate_english_text("The city of Paris is very pretty.") # Париж шәһәре бик матур.
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
## Citation
|
| 106 |
+
|
| 107 |
+
If you use this model, please cite our work as:
|
| 108 |
+
|
| 109 |
+
```
|
| 110 |
+
@article{tweeties2024,
|
| 111 |
+
title = {Trans-Tokenization and Cross-lingual Vocabulary Transfers: Language Adaptation of LLMs for Low-Resource NLP},
|
| 112 |
+
author = {François Remy and Pieter Delobelle and Hayastan Avetisyan and Alfiya Khabibullina and Miryam de Lhoneux and Thomas Demeester},
|
| 113 |
+
url = {https://huggingface.co/Tweeties},
|
| 114 |
+
year = {2024},
|
| 115 |
+
note = {Under review at COLM 2024}
|
| 116 |
+
}
|
| 117 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Tweeties/tweety-tatar-hydra-mt-7b-2024-v1",
|
| 3 |
+
"additional_special_tokens_ids": [],
|
| 4 |
+
"architectures": [
|
| 5 |
+
"LlamaHydraForCausalLM"
|
| 6 |
+
],
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "modeling_llama_hydra.LlamaHydraConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_llama_hydra.LlamaHydraForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"attention_bias": false,
|
| 12 |
+
"attention_dropout": 0.0,
|
| 13 |
+
"bos_token_id": 1,
|
| 14 |
+
"cls_token_id": null,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"hidden_act": "silu",
|
| 17 |
+
"hidden_size": 4096,
|
| 18 |
+
"initializer_range": 0.02,
|
| 19 |
+
"input_vocab_size": 64007,
|
| 20 |
+
"intermediate_size": 11008,
|
| 21 |
+
"mask_token_id": null,
|
| 22 |
+
"max_position_embeddings": 4096,
|
| 23 |
+
"model_type": "llama_hydra",
|
| 24 |
+
"num_attention_heads": 32,
|
| 25 |
+
"num_hidden_layers": 32,
|
| 26 |
+
"num_key_value_heads": 32,
|
| 27 |
+
"output_vocab_size": 32000,
|
| 28 |
+
"pretraining_tp": 1,
|
| 29 |
+
"rms_norm_eps": 1e-05,
|
| 30 |
+
"rope_scaling": null,
|
| 31 |
+
"rope_theta": 10000.0,
|
| 32 |
+
"tie_word_embeddings": false,
|
| 33 |
+
"tokenizer_class": "LlamaTokenizerFast",
|
| 34 |
+
"torch_dtype": "float32",
|
| 35 |
+
"transformers_version": "4.37.1",
|
| 36 |
+
"unk_token_id": 0,
|
| 37 |
+
"use_cache": true,
|
| 38 |
+
"vocab_size": 32000
|
| 39 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"transformers_version": "4.37.1",
|
| 6 |
+
"use_cache": false
|
| 7 |
+
}
|
model-00001-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f47e01515e6c7cee6059de216df3993bda7e6048e01980c32edbd400264bf79b
|
| 3 |
+
size 4915975008
|
model-00002-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c657406da0aa52f3334204a1213f42e048f879ed5811329b5b80c87134fb59dc
|
| 3 |
+
size 4857206856
|
model-00003-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b5980631f0fdb0395722aaca5c54d31f17862572d11ba88d91a70276668592a
|
| 3 |
+
size 4857206896
|
model-00004-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4e3d6436e3aa56ecfbda3c4121487efd7b44de04a1e3e663cf98ec89162f9fba
|
| 3 |
+
size 4857206896
|
model-00005-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d4435ceb2a781926ffc860ffe4de17c11f1887bfd0a8dfe3209e0a6890fc284
|
| 3 |
+
size 4857206896
|
model-00006-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ac7442490a4c080e88ce8271f079aa073041da803632020c9389422f0a0d995
|
| 3 |
+
size 3133296224
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 27478065152
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 242 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 251 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 260 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 269 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 278 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 287 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 296 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
| 297 |
+
}
|
| 298 |
+
}
|
modeling_llama_hydra.py
ADDED
|
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import torch.utils.checkpoint
|
| 7 |
+
from torch import nn
|
| 8 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 9 |
+
|
| 10 |
+
from typing import List, Optional, Tuple, Union
|
| 11 |
+
|
| 12 |
+
import transformers
|
| 13 |
+
from transformers import LlamaConfig
|
| 14 |
+
from transformers.cache_utils import Cache
|
| 15 |
+
from transformers.modeling_outputs import (
|
| 16 |
+
BaseModelOutputWithPast,
|
| 17 |
+
CausalLMOutputWithPast,
|
| 18 |
+
QuestionAnsweringModelOutput,
|
| 19 |
+
SequenceClassifierOutputWithPast,
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
class LlamaHydraConfig(LlamaConfig):
|
| 23 |
+
model_type = "llama_hydra"
|
| 24 |
+
|
| 25 |
+
def __init__(self, **kwargs):
|
| 26 |
+
if 'vocab_size' not in kwargs:
|
| 27 |
+
if 'output_vocab_size' in kwargs:
|
| 28 |
+
kwargs['vocab_size'] = kwargs['output_vocab_size']
|
| 29 |
+
else:
|
| 30 |
+
kwargs['vocab_size'] = 32000
|
| 31 |
+
self.input_vocab_size = kwargs['input_vocab_size'] if 'input_vocab_size' in kwargs else kwargs['vocab_size']
|
| 32 |
+
self.output_vocab_size = kwargs['output_vocab_size'] if 'output_vocab_size' in kwargs else kwargs['vocab_size']
|
| 33 |
+
super().__init__(**kwargs)
|
| 34 |
+
|
| 35 |
+
class LlamaHydraForCausalLM(transformers.LlamaPreTrainedModel):
|
| 36 |
+
config_class = LlamaHydraConfig
|
| 37 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 38 |
+
|
| 39 |
+
def __init__(self, config):
|
| 40 |
+
hydra_config = LlamaHydraConfig(**config.__dict__)
|
| 41 |
+
encoder_config = LlamaConfig(**config.__dict__)
|
| 42 |
+
encoder_config.vocab_size = hydra_config.input_vocab_size
|
| 43 |
+
super().__init__(hydra_config)
|
| 44 |
+
self.model = transformers.LlamaModel(encoder_config)
|
| 45 |
+
self.input_vocab_size = hydra_config.input_vocab_size
|
| 46 |
+
self.output_vocab_size = hydra_config.output_vocab_size
|
| 47 |
+
self.vocab_size = hydra_config.vocab_size
|
| 48 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 49 |
+
|
| 50 |
+
# Initialize weights and apply final processing
|
| 51 |
+
self.post_init()
|
| 52 |
+
|
| 53 |
+
def get_input_embeddings(self):
|
| 54 |
+
return self.model.embed_tokens
|
| 55 |
+
|
| 56 |
+
def set_input_embeddings(self, value):
|
| 57 |
+
self.model.embed_tokens = value
|
| 58 |
+
|
| 59 |
+
def get_output_embeddings(self):
|
| 60 |
+
return self.lm_head
|
| 61 |
+
|
| 62 |
+
def set_output_embeddings(self, new_embeddings):
|
| 63 |
+
self.lm_head = new_embeddings
|
| 64 |
+
|
| 65 |
+
def set_decoder(self, decoder):
|
| 66 |
+
self.model = decoder
|
| 67 |
+
|
| 68 |
+
def get_decoder(self):
|
| 69 |
+
return self.model
|
| 70 |
+
|
| 71 |
+
#@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
| 72 |
+
#@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
| 73 |
+
def forward(
|
| 74 |
+
self,
|
| 75 |
+
input_ids: torch.LongTensor = None,
|
| 76 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 77 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 78 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 79 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 80 |
+
labels: Optional[torch.LongTensor] = None,
|
| 81 |
+
use_cache: Optional[bool] = None,
|
| 82 |
+
output_attentions: Optional[bool] = None,
|
| 83 |
+
output_hidden_states: Optional[bool] = None,
|
| 84 |
+
return_dict: Optional[bool] = None,
|
| 85 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 86 |
+
r"""
|
| 87 |
+
Args:
|
| 88 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 89 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
| 90 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
| 91 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
| 92 |
+
|
| 93 |
+
Returns:
|
| 94 |
+
|
| 95 |
+
Example:
|
| 96 |
+
|
| 97 |
+
```python
|
| 98 |
+
>>> from transformers import AutoTokenizer, LlamaForCausalLM
|
| 99 |
+
|
| 100 |
+
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 101 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
| 102 |
+
|
| 103 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 104 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
| 105 |
+
|
| 106 |
+
>>> # Generate
|
| 107 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 108 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 109 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
| 110 |
+
```"""
|
| 111 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 112 |
+
output_hidden_states = (
|
| 113 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 114 |
+
)
|
| 115 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 116 |
+
|
| 117 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
| 118 |
+
outputs = self.model(
|
| 119 |
+
input_ids=input_ids,
|
| 120 |
+
attention_mask=attention_mask,
|
| 121 |
+
position_ids=position_ids,
|
| 122 |
+
past_key_values=past_key_values,
|
| 123 |
+
inputs_embeds=inputs_embeds,
|
| 124 |
+
use_cache=use_cache,
|
| 125 |
+
output_attentions=output_attentions,
|
| 126 |
+
output_hidden_states=output_hidden_states,
|
| 127 |
+
return_dict=return_dict,
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
hidden_states = outputs[0]
|
| 131 |
+
if self.config.pretraining_tp > 1:
|
| 132 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 133 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
| 134 |
+
logits = torch.cat(logits, dim=-1)
|
| 135 |
+
else:
|
| 136 |
+
logits = self.lm_head(hidden_states)
|
| 137 |
+
logits = logits.float()
|
| 138 |
+
|
| 139 |
+
loss = None
|
| 140 |
+
if labels is not None:
|
| 141 |
+
# Shift so that tokens < n predict n
|
| 142 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
| 143 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 144 |
+
# Flatten the tokens
|
| 145 |
+
loss_fct = CrossEntropyLoss()
|
| 146 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
| 147 |
+
shift_labels = shift_labels.view(-1)
|
| 148 |
+
# Enable model parallelism
|
| 149 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
| 150 |
+
loss = loss_fct(shift_logits, shift_labels)
|
| 151 |
+
|
| 152 |
+
if not return_dict:
|
| 153 |
+
output = (logits,) + outputs[1:]
|
| 154 |
+
return (loss,) + output if loss is not None else output
|
| 155 |
+
|
| 156 |
+
return CausalLMOutputWithPast(
|
| 157 |
+
loss=loss,
|
| 158 |
+
logits=logits,
|
| 159 |
+
past_key_values=outputs.past_key_values,
|
| 160 |
+
hidden_states=outputs.hidden_states,
|
| 161 |
+
attentions=outputs.attentions,
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
def prepare_inputs_for_generation(
|
| 165 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
| 166 |
+
):
|
| 167 |
+
if past_key_values is not None:
|
| 168 |
+
if isinstance(past_key_values, Cache):
|
| 169 |
+
cache_length = past_key_values.get_seq_length()
|
| 170 |
+
past_length = past_key_values.seen_tokens
|
| 171 |
+
max_cache_length = past_key_values.get_max_length()
|
| 172 |
+
else:
|
| 173 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 174 |
+
max_cache_length = None
|
| 175 |
+
|
| 176 |
+
# Keep only the unprocessed tokens:
|
| 177 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 178 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
| 179 |
+
# input)
|
| 180 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 181 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 182 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 183 |
+
# input_ids based on the past_length.
|
| 184 |
+
elif past_length < input_ids.shape[1]:
|
| 185 |
+
input_ids = input_ids[:, past_length:]
|
| 186 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 187 |
+
|
| 188 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 189 |
+
if (
|
| 190 |
+
max_cache_length is not None
|
| 191 |
+
and attention_mask is not None
|
| 192 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 193 |
+
):
|
| 194 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
| 195 |
+
|
| 196 |
+
position_ids = kwargs.get("position_ids", None)
|
| 197 |
+
if attention_mask is not None and position_ids is None:
|
| 198 |
+
# create position_ids on the fly for batch generation
|
| 199 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 200 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 201 |
+
if past_key_values:
|
| 202 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 203 |
+
|
| 204 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 205 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 206 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 207 |
+
else:
|
| 208 |
+
model_inputs = {"input_ids": input_ids}
|
| 209 |
+
|
| 210 |
+
model_inputs.update(
|
| 211 |
+
{
|
| 212 |
+
"position_ids": position_ids,
|
| 213 |
+
"past_key_values": past_key_values,
|
| 214 |
+
"use_cache": kwargs.get("use_cache"),
|
| 215 |
+
"attention_mask": attention_mask,
|
| 216 |
+
}
|
| 217 |
+
)
|
| 218 |
+
return model_inputs
|
| 219 |
+
|
| 220 |
+
@staticmethod
|
| 221 |
+
def _reorder_cache(past_key_values, beam_idx):
|
| 222 |
+
reordered_past = ()
|
| 223 |
+
for layer_past in past_key_values:
|
| 224 |
+
reordered_past += (
|
| 225 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
| 226 |
+
)
|
| 227 |
+
return reordered_past
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "<unk>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ca82daf7120db431caf5fb454efcc44d80fb1226ed92fe5b3a33e1a717a35a6
|
| 3 |
+
size 924701
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<s>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "</s>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"bos_token": "<s>",
|
| 31 |
+
"clean_up_tokenization_spaces": false,
|
| 32 |
+
"eos_token": "</s>",
|
| 33 |
+
"legacy": true,
|
| 34 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 35 |
+
"pad_token": null,
|
| 36 |
+
"sp_model_kwargs": {},
|
| 37 |
+
"spaces_between_special_tokens": false,
|
| 38 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 39 |
+
"unk_token": "<unk>",
|
| 40 |
+
"use_default_system_prompt": false
|
| 41 |
+
}
|