First Readme
Browse files
README.md
ADDED
|
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
library_name: vllm
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
tags:
|
| 7 |
+
- text-generation
|
| 8 |
+
- conversational
|
| 9 |
+
- compressed-tensors
|
| 10 |
+
- awq
|
| 11 |
+
- w4a16
|
| 12 |
+
- quantized
|
| 13 |
+
- moe
|
| 14 |
+
base_model: PrimeIntellect/INTELLECT-3
|
| 15 |
+
base_model_relation: quantized
|
| 16 |
+
quantized_by: TheHouseOfTheDude
|
| 17 |
+
license: other
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# INTELLECT-3 — **Quantized** (compressed-tensors for vLLM, GLM-4.5-Air MoE finetune)
|
| 21 |
+
|
| 22 |
+
This repository provides **quantized runtime builds** of
|
| 23 |
+
**PrimeIntellect/INTELLECT-3**, repackaged for **vLLM** using the **compressed-tensors** format.
|
| 24 |
+
|
| 25 |
+
> **TL;DR**
|
| 26 |
+
> - **Quantized** branch: **W4A16** (INT4 weights / A16 activations) for vLLM via `--quantization compressed-tensors`.
|
| 27 |
+
> - Same calibration recipe as our recent cards: **512** chat samples at **2048** tokens max from **`neuralmagic/LLM_compression_calibration`** (rendered with the model’s chat template).
|
| 28 |
+
> - Weight-only **AWQ**, **group size 128**, **symmetric** quant, `lm_head` left in higher precision, exported with `save_compressed=True`.
|
| 29 |
+
> - Parent is a **GLM-4.5-Air MoE** finetune; notes below cover MoE-specific considerations.
|
| 30 |
+
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
## Revisions & Branches
|
| 34 |
+
|
| 35 |
+
> The **`main`** branch is a landing page (model card + links). Runnable artifacts live in per-quant branches.
|
| 36 |
+
|
| 37 |
+
- **main** — placeholder / landing page
|
| 38 |
+
- **W4A16** — 4-bit weights / 16-bit activations (compressed-tensors)
|
| 39 |
+
|
| 40 |
+
**Quick links**
|
| 41 |
+
|
| 42 |
+
- main: https://huggingface.co/TheHouseOfTheDude/INTELLECT-3_Compressed-Tensors/tree/main
|
| 43 |
+
- W4A16: https://huggingface.co/TheHouseOfTheDude/INTELLECT-3_Compressed-Tensors/tree/W4A16
|
| 44 |
+
|
| 45 |
+
---
|
| 46 |
+
|
| 47 |
+
## What’s inside (per revision)
|
| 48 |
+
|
| 49 |
+
- Sharded **quantized** weights (`*.safetensors`) + index (`model.safetensors.index.json`)
|
| 50 |
+
- `config.json` with **compressed-tensors** metadata (`weight_format`, `quantization`, `quantization_config`, etc.)
|
| 51 |
+
- Tokenizer artifacts (`tokenizer.json`, `tokenizer.model`, merges/vocab as applicable)
|
| 52 |
+
- Optional: `chat_template.jinja` (inherits the finetune’s chat style)
|
| 53 |
+
|
| 54 |
+
> Exact file lists may differ between branches — see **Files and versions** for each revision.
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
## Quantization & calibration details (same script/recipe family as previous card)
|
| 59 |
+
|
| 60 |
+
**Method / flow**
|
| 61 |
+
- `llmcompressor` **oneshot** pipeline with an **AWQModifier** (weight-only).
|
| 62 |
+
|
| 63 |
+
**Targets / exclusions**
|
| 64 |
+
- Quantize **Linear** layers across the model (including MoE expert linear projections).
|
| 65 |
+
- **Ignore** `lm_head` (kept in higher precision).
|
| 66 |
+
|
| 67 |
+
**Weights / grouping**
|
| 68 |
+
- **INT4** (`num_bits=4`, `type="int"`, `symmetric=True`)
|
| 69 |
+
- Strategy: `"group"` with **`group_size=128`** (Marlin-friendly)
|
| 70 |
+
- **Activations are not quantized** (runtime **A16**: BF16/FP16)
|
| 71 |
+
|
| 72 |
+
**Calibration dataset & preprocessing**
|
| 73 |
+
- Dataset: **`neuralmagic/LLM_compression_calibration`**, split **`train`**
|
| 74 |
+
- **NUM_CALIBRATION_SAMPLES = 512** (random subset with fixed seed)
|
| 75 |
+
- **MAX_SEQUENCE_LENGTH = 2048**
|
| 76 |
+
- Each sample’s `messages` list is rendered via the model tokenizer’s
|
| 77 |
+
`apply_chat_template(..., tokenize=False)`, then tokenized with:
|
| 78 |
+
- `max_length=2048`, `truncation=True`, `padding=False`, `add_special_tokens=False`
|
| 79 |
+
|
| 80 |
+
**Compression call**
|
| 81 |
+
- `oneshot(..., max_seq_length=2048, num_calibration_samples=512, tokenizer=tokenizer)` on the preprocessed dataset
|
| 82 |
+
|
| 83 |
+
**Export for vLLM**
|
| 84 |
+
- Saved with **`save_compressed=True`** so **vLLM** reads the **compressed-tensors** runtime layout directly
|
| 85 |
+
|
| 86 |
+
---
|
| 87 |
+
|
| 88 |
+
## GLM-4.5-Air MoE notes
|
| 89 |
+
|
| 90 |
+
- **Mixture-of-Experts (MoE)** means most transformer blocks host multiple expert FFNs with a router/gating network that activates a subset per token.
|
| 91 |
+
- **Quantization impact:** AWQ weight-only quantization is applied to expert **Linear** layers as well as shared projections; the **router** (small linear(s)) is quantized like other Linear layers.
|
| 92 |
+
- **Serving tips (vLLM):**
|
| 93 |
+
- Ensure your vLLM build supports MoE routing for the GLM-family architecture.
|
| 94 |
+
- Throughput depends on **expert parallelism** + **tensor parallelism**; scale `--tensor-parallel-size` to your GPUs and mind interconnect bandwidth.
|
| 95 |
+
- Token-wise active experts increase **KV-cache** and memory pressure slightly; keep `--max-model-len` aligned with hardware.
|
| 96 |
+
|
| 97 |
+
---
|
| 98 |
+
|
| 99 |
+
## Context length
|
| 100 |
+
|
| 101 |
+
- **Calibration context:** up to **2048 tokens** per sample (as above).
|
| 102 |
+
- **Model context window:** inherited from **PrimeIntellect/INTELLECT-3**; quantization does **not** change rope/position encodings—only the numeric representation of the weights.
|
| 103 |
+
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
## Quickstart — vLLM (compressed-tensors)
|
| 107 |
+
|
| 108 |
+
Install vLLM (recent version recommended):
|
| 109 |
+
|
| 110 |
+
pip install vllm
|
| 111 |
+
|
| 112 |
+
Serve (adjust to your hardware):
|
| 113 |
+
|
| 114 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 \
|
| 115 |
+
vllm serve TheHouseOfTheDude/INTELLECT-3_Compressed-Tensors \
|
| 116 |
+
--quantization compressed-tensors \
|
| 117 |
+
--tensor-parallel-size 8 \
|
| 118 |
+
--max-model-len 2048 \
|
| 119 |
+
--gpu-memory-utilization 0.70 \
|
| 120 |
+
--dtype bfloat16
|
| 121 |
+
|
| 122 |
+
Example Chat Completions:
|
| 123 |
+
|
| 124 |
+
curl http://localhost:8000/v1/chat/completions \
|
| 125 |
+
-H "Content-Type: application/json" \
|
| 126 |
+
-d '{
|
| 127 |
+
"model": "TheHouseOfTheDude/INTELLECT-3_Compressed-Tensors",
|
| 128 |
+
"messages": [
|
| 129 |
+
{"role":"system","content":"You are INTELLECT — helpful, precise, and safe."},
|
| 130 |
+
{"role":"user","content":"Outline a plan for multi-document retrieval with MoE models."}
|
| 131 |
+
],
|
| 132 |
+
"max_tokens": 512,
|
| 133 |
+
"temperature": 0.7,
|
| 134 |
+
"top_p": 0.95
|
| 135 |
+
}'
|
| 136 |
+
|
| 137 |
+
> **Note:** `compressed-tensors` is a **vLLM runtime** format. Loading directly with vanilla 🤗 Transformers is **not supported**.
|
| 138 |
+
> For Transformers, use a compatible export (e.g., GPTQ/AWQ for Transformers) or the full-precision finetune.
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
|
| 142 |
+
## Prompting / chat template
|
| 143 |
+
|
| 144 |
+
This package follows the **finetuned parent’s** chat conventions. If a `chat_template.jinja` is present, libraries that support `apply_chat_template` will automatically format messages.
|
| 145 |
+
|
| 146 |
+
Guidelines:
|
| 147 |
+
- Keep the **system** message concise (behavior, tone, safety constraints).
|
| 148 |
+
- Provide clear **user** instructions; for multi-step tasks, list steps explicitly.
|
| 149 |
+
|
| 150 |
+
---
|
| 151 |
+
|
| 152 |
+
## Intended use & safety
|
| 153 |
+
|
| 154 |
+
This quantization:
|
| 155 |
+
- **Does not** change underlying behavior or content tendencies.
|
| 156 |
+
- **Only** changes weight storage for efficient inference.
|
| 157 |
+
|
| 158 |
+
Apply appropriate **content filters / policies** for your deployment context.
|
| 159 |
+
|
| 160 |
+
---
|
| 161 |
+
|
| 162 |
+
## Lineage
|
| 163 |
+
|
| 164 |
+
- **Finetuned parent:** https://huggingface.co/PrimeIntellect/INTELLECT-3
|
| 165 |
+
- **This repo:** **Quantized child** of the finetune (**compressed-tensors** for vLLM)
|
| 166 |
+
|
| 167 |
+
---
|
| 168 |
+
|
| 169 |
+
## Hardware tips
|
| 170 |
+
|
| 171 |
+
- 100B+-class MoE models benefit from **multi-GPU** tensor parallel; interconnect bandwidth matters (NVLink/IB).
|
| 172 |
+
- Long contexts are **KV-cache** heavy — tune `--max-model-len` and batch size.
|
| 173 |
+
- Prefer **BF16** on GPUs with native support; otherwise **FP16**.
|
| 174 |
+
- Consider CUDA Graphs if stable in your environment.
|
| 175 |
+
|
| 176 |
+
---
|
| 177 |
+
|
| 178 |
+
## Changelog
|
| 179 |
+
|
| 180 |
+
- **v1 (current)** — Initial **compressed-tensors W4A16** quantization with **512-sample / 2048-token** AWQ calibration; vLLM-ready packaging.
|