yuanshengni commited on
Commit
c663881
Β·
verified Β·
1 Parent(s): dfdd720

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - TIGER-Lab/VisCode-Multi-679K
5
+ language:
6
+ - en
7
+ base_model:
8
+ - Qwen/Qwen2.5-Coder-32B-Instruct
9
+ tags:
10
+ - code
11
+ ---
12
+
13
+ # VisCoder2-32B
14
+
15
+ [🏠 Project Page](https://tiger-ai-lab.github.io/VisCoder2) | [πŸ“– Paper](https://arxiv.org/abs/2510.23642) | [πŸ’» GitHub](https://github.com/TIGER-AI-Lab/VisCoder2) | [πŸ€— VisCode2](https://hf.co/collections/TIGER-Lab/viscoder2)
16
+
17
+ **VisCoder2-32B** is a lightweight multi-language visualization coding model trained for **executable code generation, rendering, and iterative self-debugging**.
18
+
19
+ ---
20
+
21
+ ## 🧠 Model Description
22
+
23
+ **VisCoder2-32B** is trained on the **VisCode-Multi-679K** dataset, a large-scale instruction-tuning dataset for executable visualization tasks across **12 programming language**. It addresses a core challenge in multi-language visualization: generating code that not only executes successfully but also produces semantically consistent visual outputs by aligning natural-language instructions and rendering results.
24
+
25
+ ---
26
+
27
+ ## πŸ“Š Main Results on VisPlotBench
28
+
29
+ We evaluate VisCoder2-32B on [**VisPlotBench**](https://huggingface.co/datasets/TIGER-Lab/VisPlotBench), which includes 888 executable visualization tasks spanning 8 languages, supporting both standard generation and multi-turn self-debugging.
30
+
31
+ ![main_results](https://cdn-uploads.huggingface.co/production/uploads/64de37ee5e192985054be575/DRR3Y5vVS-KbniGJ3wmTi.png)
32
+
33
+ > **VisCoder2-32B** shows consistent performance across multiple languages and achieves notable improvements under the multi-round self-debug setting.
34
+ ---
35
+
36
+ ## πŸ“ Training Details
37
+
38
+ - **Base model**: Qwen2.5-Coder-32B-Instruct
39
+ - **Framework**: [ms-swift](https://github.com/modelscope/swift)
40
+ - **Tuning method**: Full-parameter supervised fine-tuning (SFT)
41
+ - **Dataset**: [VisCode-Multi-679K](https://huggingface.co/datasets/TIGER-Lab/VisCode-Multi-679K)
42
+
43
+ ---
44
+
45
+ ## πŸ“– Citation
46
+
47
+ If you use VisCoder2-32B or related datasets in your research, please cite:
48
+
49
+ ```bibtex
50
+ @misc{ni2025viscoder2buildingmultilanguagevisualization,
51
+ title={VisCoder2: Building Multi-Language Visualization Coding Agents},
52
+ author={Yuansheng Ni and Songcheng Cai and Xiangchao Chen and Jiarong Liang and Zhiheng Lyu and Jiaqi Deng and Kai Zou and Ping Nie and Fei Yuan and Xiang Yue and Wenhu Chen},
53
+ year={2025},
54
+ eprint={2510.23642},
55
+ archivePrefix={arXiv},
56
+ primaryClass={cs.SE},
57
+ url={https://arxiv.org/abs/2510.23642},
58
+ }
59
+
60
+ @article{ni2025viscoder,
61
+ title={VisCoder: Fine-Tuning LLMs for Executable Python Visualization Code Generation},
62
+ author={Ni, Yuansheng and Nie, Ping and Zou, Kai and Yue, Xiang and Chen, Wenhu},
63
+ journal={arXiv preprint arXiv:2506.03930},
64
+ year={2025}
65
+ }
66
+ ```
67
+
68
+ For evaluation scripts and more information, see our [GitHub repository](https://github.com/TIGER-AI-Lab/VisCoder2).