SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("T-Blue/tsdae_pro_mbert")
# Run inference
sentences = [
'𑀫च𑀢𑀲𑀢 𑀳न𑀪𑁦𑀟𑀦 च',
' 𑀳𑀫त𑀫𑁦𑀪ढचप𑀢न𑀞 पच 𑀫च𑀢𑀲𑀢 ञच𑀦 𑀳न𑀪𑁦𑀟𑀦 च त𑀢𑀞𑀢𑀟 𑀭थ𑀖𑀗𑀯',
'𑀯',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 97,043 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 5.12 tokens
- max: 30 tokens
- min: 3 tokens
- mean: 9.06 tokens
- max: 56 tokens
- Samples:
sentence_0 sentence_1 च𑀞𑀱च𑀢च𑀞𑀱च𑀢 𑀭ठ𑀯ठ𑀧𑀧𑁢𑀯ठ𑀧𑀧𑁢𑀯𑁢𑀗𑀯𑁢𑀗𑀯 - Loss:
DenoisingAutoEncoderLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 5multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0824 | 500 | 1.1372 |
| 0.1649 | 1000 | 0.8075 |
| 0.2473 | 1500 | 0.7708 |
| 0.3297 | 2000 | 0.7464 |
| 0.4121 | 2500 | 0.7286 |
| 0.4946 | 3000 | 0.7187 |
| 0.5770 | 3500 | 0.7089 |
| 0.6594 | 4000 | 0.6942 |
| 0.7418 | 4500 | 0.7022 |
| 0.8243 | 5000 | 0.6939 |
| 0.9067 | 5500 | 0.6859 |
| 0.9891 | 6000 | 0.6807 |
| 1.0715 | 6500 | 0.6841 |
| 1.1540 | 7000 | 0.6764 |
| 1.2364 | 7500 | 0.6705 |
| 1.3188 | 8000 | 0.6712 |
| 1.4013 | 8500 | 0.6683 |
| 1.4837 | 9000 | 0.6662 |
| 1.5661 | 9500 | 0.6635 |
| 1.6485 | 10000 | 0.655 |
| 1.7310 | 10500 | 0.6667 |
| 1.8134 | 11000 | 0.6533 |
| 1.8958 | 11500 | 0.6564 |
| 1.9782 | 12000 | 0.646 |
| 2.0607 | 12500 | 0.6522 |
| 2.1431 | 13000 | 0.6466 |
| 2.2255 | 13500 | 0.6464 |
| 2.3079 | 14000 | 0.647 |
| 2.3904 | 14500 | 0.6408 |
| 2.4728 | 15000 | 0.6415 |
| 2.5552 | 15500 | 0.6397 |
| 2.6377 | 16000 | 0.6303 |
| 2.7201 | 16500 | 0.6465 |
| 2.8025 | 17000 | 0.6287 |
| 2.8849 | 17500 | 0.6358 |
| 2.9674 | 18000 | 0.6247 |
| 3.0498 | 18500 | 0.6318 |
| 3.1322 | 19000 | 0.627 |
| 3.2146 | 19500 | 0.6222 |
| 3.2971 | 20000 | 0.6262 |
| 3.3795 | 20500 | 0.6197 |
| 3.4619 | 21000 | 0.6234 |
| 3.5443 | 21500 | 0.6193 |
| 3.6268 | 22000 | 0.6088 |
| 3.7092 | 22500 | 0.624 |
| 3.7916 | 23000 | 0.6089 |
| 3.8741 | 23500 | 0.6184 |
| 3.9565 | 24000 | 0.6047 |
| 4.0389 | 24500 | 0.6066 |
| 4.1213 | 25000 | 0.6082 |
| 4.2038 | 25500 | 0.5999 |
| 4.2862 | 26000 | 0.6046 |
| 4.3686 | 26500 | 0.6038 |
| 4.4510 | 27000 | 0.5978 |
| 4.5335 | 27500 | 0.5948 |
| 4.6159 | 28000 | 0.5887 |
| 4.6983 | 28500 | 0.6031 |
| 4.7807 | 29000 | 0.5823 |
| 4.8632 | 29500 | 0.5953 |
| 4.9456 | 30000 | 0.5793 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.33.0
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
DenoisingAutoEncoderLoss
@inproceedings{wang-2021-TSDAE,
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
pages = "671--688",
url = "https://arxiv.org/abs/2104.06979",
}
- Downloads last month
- -
Model tree for T-Blue/tsdae_pro_mbert
Base model
google-bert/bert-base-uncased