--- library_name: transformers license: mit base_model: google/vivit-b-16x2-kinetics400 tags: - generated_from_trainer metrics: - accuracy model-index: - name: ViViT_wlasl_2000_20ep_coR results: [] --- # ViViT_wlasl_2000_20ep_coR This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2256 - Accuracy: 0.3437 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 35720 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 30.7198 | 0.05 | 1786 | 7.5765 | 0.0023 | | 29.0292 | 1.0500 | 3572 | 6.7339 | 0.0255 | | 24.0941 | 2.0500 | 5358 | 5.7016 | 0.0889 | | 18.973 | 3.0500 | 7145 | 4.8953 | 0.1604 | | 14.3207 | 4.05 | 8931 | 4.2779 | 0.2188 | | 10.2288 | 5.0500 | 10717 | 3.8242 | 0.2561 | | 6.8987 | 6.0500 | 12503 | 3.4816 | 0.2990 | | 4.4195 | 7.0500 | 14290 | 3.3354 | 0.3105 | | 2.8005 | 8.05 | 16076 | 3.2289 | 0.3212 | | 1.8191 | 9.0500 | 17862 | 3.1795 | 0.3200 | | 1.2778 | 10.0500 | 19648 | 3.1637 | 0.3292 | | 1.0009 | 11.0500 | 21435 | 3.1523 | 0.3299 | | 0.8082 | 12.05 | 23221 | 3.1508 | 0.3292 | | 0.7047 | 13.0500 | 25007 | 3.1626 | 0.3276 | | 0.6152 | 14.0500 | 26793 | 3.1711 | 0.3327 | | 0.545 | 15.0500 | 28580 | 3.2040 | 0.3394 | | 0.4952 | 16.05 | 30366 | 3.1936 | 0.3424 | | 0.4463 | 17.0500 | 32152 | 3.2133 | 0.3435 | | 0.403 | 18.0500 | 33938 | 3.2240 | 0.3432 | | 0.3506 | 19.0499 | 35720 | 3.2256 | 0.3437 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.1