Ronenk94 commited on
Commit
e63b419
·
verified ·
1 Parent(s): 8bd49f2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -3
README.md CHANGED
@@ -1,3 +1,47 @@
1
- ---
2
- license: cc-by-sa-4.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ ---
4
+ # 🧠 Top-K 300 Sparse Autoencoder (SAE) — SAEdit
5
+ **Repo:** `Ronenk94/T5_matryoshka_sae`
6
+ **Model Type:** Sparse Autoencoder over T5 Embeddings
7
+ **Paper:** *SAEdit: Token-level control for continuous image editing via Sparse AutoEncoder*
8
+ **License:** CC BY 4.0
9
+
10
+ ---
11
+
12
+ ## 📌 Model Overview
13
+
14
+ This repository contains the **Top-K 300 Sparse Autoencoder (SAE)** used in the SAEdit framework.
15
+ It is trained on **T5 text embeddings** and designed to produce **sparse latent representations** that enable *token-level semantic control* in image editing pipelines.
16
+
17
+ | Property | Details |
18
+ |----------|--------|
19
+ | **Architecture** | GlobalBatchTopKMatryoshkaSAE |
20
+ | **Latent sparsity** | Top-K = 300 activations |
21
+ | **Backbone embeddings** | Frozen T5 encoder |
22
+ | **Task** | Semantic factorization + reconstruction |
23
+ | **Use case** | Editing directions for diffusion-based image manipulation |
24
+
25
+ ---
26
+
27
+ ## 📥 How to Load
28
+
29
+ ```python
30
+ import torch
31
+ from src.models.sparse_autoencoders.matryoshka_sae import GlobalBatchTopKMatryoshkaSAE
32
+
33
+ # Option A — using a from_pretrained method (if implemented)
34
+ model = GlobalBatchTopKMatryoshkaSAE.from_pretrained(
35
+ "Ronenk94/T5_matryoshka_sae",
36
+ device="cuda"
37
+ )
38
+
39
+ # Option B — manual load if using state_dict
40
+ checkpoint = torch.load("pytorch_model.bin", map_location="cpu")
41
+ with open("config.json", "r") as f:
42
+ cfg = json.load(f)
43
+
44
+ model = GlobalBatchTopKMatryoshkaSAE(cfg)
45
+ model.load_state_dict(checkpoint)
46
+ model.to("cuda").eval()
47
+