---
language:
- multilingual
license: mit
license_link: https://huggingface.co/moonshotai/Kimi-Dev-72B/blob/main/LICENSE.md
library_name: transformers
pipeline_tag: text-generation
tags:
- GPTQ
- Int8
- vLLM
- code
- swebench
- software
- issue-resolving
base_model:
- moonshotai/Kimi-Dev-72B
base_model_relation: quantized
---
# Kimi-Dev-72B-GPTQ-Int8
Base model: [moonshotai/Kimi-Dev-72B](https://huggingface.co/moonshotai/Kimi-Dev-72B)
Calibrate using the https://huggingface.co/datasets/timdettmers/openassistant-guanaco/blob/main/openassistant_best_replies_eval.jsonl dataset.
The quantization configuration is as follows
```
quant_config = QuantizeConfig(bits=8, group_size=128, desc_act=False)
```
### 【vLLM Startup Command】
```
vllm serve JunHowie/Kimi-Dev-72B-GPTQ-Int8
```
### 【Model Download】
```python
from huggingface_hub import snapshot_download
snapshot_download('JunHowie/Kimi-Dev-72B-GPTQ-Int8', cache_dir="your_local_path")
```
### 【Overview】
Kimi-Dev Team
We introduce Kimi-Dev-72B, our new open-source coding LLM for software engineering tasks. Kimi-Dev-72B achieves a new state-of-the-art on SWE-bench Verified among open-source models.
- Kimi-Dev-72B achieves 60.4% performance on SWE-bench Verified. It surpasses the runner-up, setting a new state-of-the-art result among open-source models.
- Kimi-Dev-72B is optimized via large-scale reinforcement learning. It autonomously patches real repositories in Docker and gains rewards only when the entire test suite passes. This ensures correct and robust solutions, aligning with real-world development standards.
- Kimi-Dev-72B is available for download and deployment on Hugging Face and GitHub. We welcome developers and researchers to explore its capabilities and contribute to development.
Performance of Open-source Models on SWE-bench Verified.
## Quick Start
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "moonshotai/Kimi-Dev-72B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Citation
```
@misc{kimi_dev_72b_2025,
title = {Introducing Kimi-Dev: A Strong and Open-source Coding LLM for Issue Resolution},
author = {{Kimi-Dev Team}},
year = {2025},
month = {June},
url = {\url{https://www.moonshot.cn/Kimi-Dev}}
}
```