Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,65 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# Marqo Chimera Arctic bge M
|
| 6 |
+
|
| 7 |
+
This is a chimera model which concatenates embeddings from [Snowflake/snowflake-arctic-embed-m-v1.5](https://huggingface.co/Snowflake/snowflake-arctic-embed-m-v1.5) and [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). This model produces an embedding with 1536 dimensions (768+768) and has a total of 218M parameters (109+109).
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
## Usage
|
| 11 |
+
|
| 12 |
+
```python
|
| 13 |
+
import torch
|
| 14 |
+
from torch.nn.functional import normalize
|
| 15 |
+
from transformers import AutoModel, AutoTokenizer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Load the model and tokenizer.
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained("Marqo/marqo-chimera-arctic-bge-m")
|
| 20 |
+
model = AutoModel.from_pretrained("Marqo/marqo-chimera-arctic-bge-m", trust_remote_code=True)
|
| 21 |
+
model.eval()
|
| 22 |
+
|
| 23 |
+
# Model constants.
|
| 24 |
+
query_prefix = 'Represent this sentence for searching relevant passages: '
|
| 25 |
+
|
| 26 |
+
# Your queries and docs.
|
| 27 |
+
queries = ['what is snowflake?', 'Where can I get the best tacos?']
|
| 28 |
+
documents = ['The Data Cloud!', 'Mexico City of Course!']
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# Add query prefix and tokenize queries and docs.
|
| 32 |
+
queries_with_prefix = [f"{query_prefix}{q}" for q in queries]
|
| 33 |
+
query_tokens = tokenizer(queries_with_prefix, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 34 |
+
document_tokens = tokenizer(documents, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
| 35 |
+
|
| 36 |
+
# Use the model to generate text embeddings.
|
| 37 |
+
with torch.inference_mode():
|
| 38 |
+
query_embeddings = model(**query_tokens)
|
| 39 |
+
document_embeddings = model(**document_tokens)
|
| 40 |
+
|
| 41 |
+
# Remember to normalize embeddings.
|
| 42 |
+
query_embeddings = normalize(query_embeddings)
|
| 43 |
+
document_embeddings = normalize(document_embeddings)
|
| 44 |
+
|
| 45 |
+
# Scores via dotproduct.
|
| 46 |
+
scores = query_embeddings @ document_embeddings.T
|
| 47 |
+
|
| 48 |
+
# Pretty-print the results.
|
| 49 |
+
for query, query_scores in zip(queries, scores):
|
| 50 |
+
doc_score_pairs = list(zip(documents, query_scores))
|
| 51 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
| 52 |
+
print(f'Query: "{query}"')
|
| 53 |
+
for document, score in doc_score_pairs:
|
| 54 |
+
print(f'Score: {score:.4f} | Document: "{document}"')
|
| 55 |
+
print()
|
| 56 |
+
|
| 57 |
+
#### OUTPUT ####
|
| 58 |
+
# Query: "what is snowflake?"
|
| 59 |
+
# Score: 0.3025 | Document: "The Data Cloud!"
|
| 60 |
+
# Score: 0.2297 | Document: "Mexico City of Course!"
|
| 61 |
+
|
| 62 |
+
# Query: "Where can I get the best tacos?"
|
| 63 |
+
# Score: 0.4512 | Document: "Mexico City of Course!"
|
| 64 |
+
# Score: 0.2336 | Document: "The Data Cloud!"
|
| 65 |
+
```
|