Create README.md
Browse filesThe first commit! good luck!!
README.md
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
|
| 3 |
+
---
|
| 4 |
+
library_name: transformers
|
| 5 |
+
license: apache-2.0
|
| 6 |
+
language:
|
| 7 |
+
- en
|
| 8 |
+
- ko
|
| 9 |
+
base_model:
|
| 10 |
+
- meta-llama/Meta-Llama-3-8B
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
<a href="https://github.com//KULLM">
|
| 14 |
+
<img src="./bllossom_icon.png" width="40%" height="40%">
|
| 15 |
+
</a>
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# Bllossom | [Demo](https://c537bba37aaab5fc9e.gradio.live) | [Homepage](https://www.bllossom.ai/) |
|
| 19 |
+
|
| 20 |
+
The Bllossom language model is a Korean-English bilingual language model based on the open-source LLama3. It enhances the connection of knowledge between Korean and English. It has the following features:
|
| 21 |
+
|
| 22 |
+
* **Knowledge Linking**: Linking Korean and English knowledge through additional training
|
| 23 |
+
* **Vocabulary Expansion**: Expansion of Korean vocabulary to enhance Korean expressiveness.
|
| 24 |
+
* **Instruction Tuning**: Tuning using custom-made instruction following data specialized for Korean language and Korean culture
|
| 25 |
+
* **Human Feedback**: DPO has been applied
|
| 26 |
+
* **Vision-Language Alignment**: Aligning the vision transformer with this language model
|
| 27 |
+
|
| 28 |
+
**This model devel by [MLPLab at Seoultech](http://mlp.seoultech.ac.kr), [Teddysum](http://teddysum.ai/) and [Yonsei Univ](https://sites.google.com/view/hansaemkim/hansaem-kim)**
|
| 29 |
+
|
| 30 |
+
## NEWS
|
| 31 |
+
* [2024/04] We released Bllossom v2.0, based on llama-3
|
| 32 |
+
* [2023/12] We released Bllossom-Vision v1.0, based on Bllossom
|
| 33 |
+
* [2023/08] We released Bllossom v1.0, based on llama-2.
|
| 34 |
+
* [2023/07] We released Bllossom v0.7, based on polyglot-ko.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Example code
|
| 38 |
+
### Install Dependencies
|
| 39 |
+
```bash
|
| 40 |
+
pip install torch transformers==4.40.0 accelerate
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
### Python code with Pipeline
|
| 44 |
+
```python
|
| 45 |
+
import transformers
|
| 46 |
+
import torch
|
| 47 |
+
|
| 48 |
+
model_id = "MLP-KTLim/Bllossom"
|
| 49 |
+
|
| 50 |
+
pipeline = transformers.pipeline(
|
| 51 |
+
"text-generation",
|
| 52 |
+
model=model_id,
|
| 53 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 54 |
+
device_map="auto",
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
pipeline.model.eval()
|
| 58 |
+
|
| 59 |
+
PROMPT = '''λΉμ μ μ μ©ν AI μ΄μμ€ν΄νΈμ
λλ€. μ¬μ©μμ μ§μμ λν΄ μΉμ νκ³ μ ννκ² λ΅λ³ν΄μΌ ν©λλ€.'''
|
| 60 |
+
instruction = "μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λν΄ μκ°ν΄μ€"
|
| 61 |
+
|
| 62 |
+
messages = [
|
| 63 |
+
{"role": "system", "content": f"{PROMPT}"},
|
| 64 |
+
{"role": "user", "content": f"{instruction}"}
|
| 65 |
+
]
|
| 66 |
+
|
| 67 |
+
prompt = pipeline.tokenizer.apply_chat_template(
|
| 68 |
+
messages,
|
| 69 |
+
tokenize=False,
|
| 70 |
+
add_generation_prompt=True
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
terminators = [
|
| 74 |
+
pipeline.tokenizer.eos_token_id,
|
| 75 |
+
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
outputs = pipeline(
|
| 79 |
+
prompt,
|
| 80 |
+
max_new_tokens=2048,
|
| 81 |
+
eos_token_id=terminators,
|
| 82 |
+
do_sample=True,
|
| 83 |
+
temperature=0.6,
|
| 84 |
+
top_p=0.9,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
print(outputs[0]["generated_text"][len(prompt):])
|
| 88 |
+
|
| 89 |
+
# μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λ©ν°λͺ¨λ¬ μμ°μ΄μ²λ¦¬ μ°κ΅¬λ₯Ό νκ³ μμ΅λλ€. ꡬμ±μμ μκ²½ν κ΅μμ κΉλ―Όμ€, κΉμλ―Ό, μ΅μ°½μ, μμΈνΈ, μ νκ²°, μνμ, μ‘μΉμ°, μ‘μ ν, μ λμ¬ νμμ΄ μμ΅λλ€.
|
| 90 |
+
```
|
| 91 |
+
|
| 92 |
+
### Python code with AutoModel
|
| 93 |
+
```python
|
| 94 |
+
|
| 95 |
+
import os
|
| 96 |
+
import torch
|
| 97 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 98 |
+
|
| 99 |
+
model_id = 'MLP-KTLim/Bllossom'
|
| 100 |
+
|
| 101 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 102 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 103 |
+
model_id,
|
| 104 |
+
torch_dtype=torch.bfloat16,
|
| 105 |
+
device_map="auto",
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
model.eval()
|
| 109 |
+
|
| 110 |
+
PROMPT = '''λΉμ μ μ μ©ν AI μ΄μμ€ν΄νΈμ
λλ€. μ¬μ©μμ μ§μμ λν΄ μΉμ νκ³ μ ννκ² λ΅λ³ν΄μΌ ν©λλ€.'''
|
| 111 |
+
instruction = "μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λν΄ μκ°ν΄μ€"
|
| 112 |
+
|
| 113 |
+
messages = [
|
| 114 |
+
{"role": "system", "content": f"{PROMPT}"},
|
| 115 |
+
{"role": "user", "content": f"{instruction}"}
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
input_ids = tokenizer.apply_chat_template(
|
| 119 |
+
messages,
|
| 120 |
+
add_generation_prompt=True,
|
| 121 |
+
return_tensors="pt"
|
| 122 |
+
).to(model.device)
|
| 123 |
+
|
| 124 |
+
terminators = [
|
| 125 |
+
tokenizer.eos_token_id,
|
| 126 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
| 127 |
+
]
|
| 128 |
+
|
| 129 |
+
outputs = model.generate(
|
| 130 |
+
input_ids,
|
| 131 |
+
max_new_tokens=2048,
|
| 132 |
+
eos_token_id=terminators,
|
| 133 |
+
do_sample=True,
|
| 134 |
+
temperature=0.6,
|
| 135 |
+
top_p=0.9,
|
| 136 |
+
repetition_penalty = 1.1
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
print(tokenizer.decode(outputs[0][input_ids.shape[-1]:], skip_special_tokens=True))
|
| 140 |
+
# μμΈκ³ΌνκΈ°μ λνκ΅ MLPμ°κ΅¬μ€μ λ©ν°λͺ¨λ¬ μμ°μ΄μ²λ¦¬ μ°κ΅¬λ₯Ό νκ³ μμ΅λλ€. ꡬμ±μμ μκ²½ν κ΅μμ κΉλ―Όμ€, κΉμλ―Ό, μ΅μ°½μ, μμΈνΈ, μ νκ²°, μνμ, μ‘μΉμ°, μ‘μ ν, μ λμ¬ νμμ΄ μμ΅λλ€.
|
| 141 |
+
```
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
## Citation
|
| 146 |
+
**Language Model**
|
| 147 |
+
```text
|
| 148 |
+
@misc{bllossom,
|
| 149 |
+
author = {ChangSu Choi, Yongbin Jeong, Seoyoon Park, InHo Won, HyeonSeok Lim, SangMin Kim, Yejee Kang, Chanhyuk Yoon, Jaewan Park, Yiseul Lee, HyeJin Lee, Younggyun Hahm, Hansaem Kim, KyungTae Lim},
|
| 150 |
+
title = {Optimizing Language Augmentation for Multilingual Large Language Models: A Case Study on Korean},
|
| 151 |
+
year = {2024},
|
| 152 |
+
journal = {LREC-COLING 2024},
|
| 153 |
+
paperLink = {\url{https://arxiv.org/pdf/2403.10882}},
|
| 154 |
+
},
|
| 155 |
+
}
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
**Vision-Language Model**
|
| 159 |
+
```text
|
| 160 |
+
@misc{bllossom,
|
| 161 |
+
author = {Dongjae Shin, Hyunseok Lim, Inho Won, Changsu Choi, Minjun Kim, Seungwoo Song, Hangyeol Yoo, Sangmin Kim, Kyungtae Lim},
|
| 162 |
+
title = {X-LLaVA: Optimizing Bilingual Large Vision-Language Alignment},
|
| 163 |
+
year = {2024},
|
| 164 |
+
publisher = {GitHub},
|
| 165 |
+
journal = {NAACL 2024 findings},
|
| 166 |
+
paperLink = {\url{https://arxiv.org/pdf/2403.11399}},
|
| 167 |
+
},
|
| 168 |
+
}
|
| 169 |
+
```
|
| 170 |
+
|
| 171 |
+
## Contact
|
| 172 |
+
- μκ²½ν(KyungTae Lim), Professor at Seoultech. `[email protected]`
|
| 173 |
+
- ν¨μκ· (Younggyun Hahm), CEO of Teddysum. `[email protected]`
|