Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- checkpoint-148/1_Pooling/config.json +10 -0
- checkpoint-148/README.md +425 -0
- checkpoint-148/config.json +27 -0
- checkpoint-148/config_sentence_transformers.json +10 -0
- checkpoint-148/model.safetensors +3 -0
- checkpoint-148/modules.json +20 -0
- checkpoint-148/optimizer.pt +3 -0
- checkpoint-148/rng_state.pth +3 -0
- checkpoint-148/scheduler.pt +3 -0
- checkpoint-148/sentence_bert_config.json +4 -0
- checkpoint-148/special_tokens_map.json +51 -0
- checkpoint-148/tokenizer.json +3 -0
- checkpoint-148/tokenizer_config.json +55 -0
- checkpoint-148/trainer_state.json +537 -0
- checkpoint-148/training_args.bin +3 -0
- checkpoint-20/1_Pooling/config.json +10 -0
- checkpoint-20/README.md +400 -0
- checkpoint-20/config.json +27 -0
- checkpoint-20/config_sentence_transformers.json +10 -0
- checkpoint-20/model.safetensors +3 -0
- checkpoint-20/modules.json +20 -0
- checkpoint-20/optimizer.pt +3 -0
- checkpoint-20/rng_state.pth +3 -0
- checkpoint-20/scheduler.pt +3 -0
- checkpoint-20/sentence_bert_config.json +4 -0
- checkpoint-20/special_tokens_map.json +51 -0
- checkpoint-20/tokenizer.json +3 -0
- checkpoint-20/tokenizer_config.json +55 -0
- checkpoint-20/trainer_state.json +112 -0
- checkpoint-20/training_args.bin +3 -0
- eval/similarity_evaluation_results.csv +39 -0
- latest/1_Pooling/config.json +10 -0
- latest/README.md +404 -0
- latest/config.json +27 -0
- latest/config_sentence_transformers.json +10 -0
- latest/model.safetensors +3 -0
- latest/modules.json +20 -0
- latest/sentence_bert_config.json +4 -0
- latest/special_tokens_map.json +51 -0
- latest/tokenizer.json +3 -0
- latest/tokenizer_config.json +55 -0
- latest/training_args.bin +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
checkpoint-148/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
checkpoint-20/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
latest/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
checkpoint-148/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-148/README.md
ADDED
|
@@ -0,0 +1,425 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:290
|
| 8 |
+
- loss:OnlineContrastiveLoss
|
| 9 |
+
base_model: intfloat/multilingual-e5-large
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Antes se coge al mentiroso que al cojo
|
| 12 |
+
sentences:
|
| 13 |
+
- A escudero pobre, taza de plata y cántaro de cobre
|
| 14 |
+
- En río revuelto, pesca abundante
|
| 15 |
+
- Se ayuda primero al necesitado que al engañador.
|
| 16 |
+
- source_sentence: Asno de muchos, lobos lo comen
|
| 17 |
+
sentences:
|
| 18 |
+
- Sabio entre sabios, amigos lo respetan.
|
| 19 |
+
- El que mucho madruga más hace que el que Dios ayuda.
|
| 20 |
+
- Se pilla antes a un mentiroso que a un cojo
|
| 21 |
+
- source_sentence: Al buey por el asta, y al hombre por la palabra
|
| 22 |
+
sentences:
|
| 23 |
+
- Si no quieres arroz con leche, toma tres tazas
|
| 24 |
+
- Al hombre por la palabra, y al buey por el cuerno ata
|
| 25 |
+
- Ese no es tu amigo, sino alguien que siempre busca estar rodeado de bullicio y
|
| 26 |
+
actividad.
|
| 27 |
+
- source_sentence: Al médico, confesor y letrado, hablarles claro
|
| 28 |
+
sentences:
|
| 29 |
+
- Al médico, confesor y letrado, no le hayas engañado
|
| 30 |
+
- Más vale a quien Dios ayuda que quien mucho madruga
|
| 31 |
+
- Al que anda entre la miel, algo se le pega
|
| 32 |
+
- source_sentence: A muertos y a idos, no hay amigos
|
| 33 |
+
sentences:
|
| 34 |
+
- Al buen callar llaman santo
|
| 35 |
+
- A los vivos y presentes, siempre hay amigos.
|
| 36 |
+
- Al que de prestado se viste, en la calle lo desnudan
|
| 37 |
+
pipeline_tag: sentence-similarity
|
| 38 |
+
library_name: sentence-transformers
|
| 39 |
+
metrics:
|
| 40 |
+
- pearson_cosine
|
| 41 |
+
- spearman_cosine
|
| 42 |
+
model-index:
|
| 43 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-large
|
| 44 |
+
results:
|
| 45 |
+
- task:
|
| 46 |
+
type: semantic-similarity
|
| 47 |
+
name: Semantic Similarity
|
| 48 |
+
dataset:
|
| 49 |
+
name: Unknown
|
| 50 |
+
type: unknown
|
| 51 |
+
metrics:
|
| 52 |
+
- type: pearson_cosine
|
| 53 |
+
value: 0.8334934833047165
|
| 54 |
+
name: Pearson Cosine
|
| 55 |
+
- type: spearman_cosine
|
| 56 |
+
value: 0.8261353280714282
|
| 57 |
+
name: Spearman Cosine
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large
|
| 61 |
+
|
| 62 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 63 |
+
|
| 64 |
+
## Model Details
|
| 65 |
+
|
| 66 |
+
### Model Description
|
| 67 |
+
- **Model Type:** Sentence Transformer
|
| 68 |
+
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 -->
|
| 69 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 70 |
+
- **Output Dimensionality:** 1024 dimensions
|
| 71 |
+
- **Similarity Function:** Cosine Similarity
|
| 72 |
+
- **Training Dataset:**
|
| 73 |
+
- csv
|
| 74 |
+
<!-- - **Language:** Unknown -->
|
| 75 |
+
<!-- - **License:** Unknown -->
|
| 76 |
+
|
| 77 |
+
### Model Sources
|
| 78 |
+
|
| 79 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 80 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 81 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 82 |
+
|
| 83 |
+
### Full Model Architecture
|
| 84 |
+
|
| 85 |
+
```
|
| 86 |
+
SentenceTransformer(
|
| 87 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 88 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 89 |
+
(2): Normalize()
|
| 90 |
+
)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Usage
|
| 94 |
+
|
| 95 |
+
### Direct Usage (Sentence Transformers)
|
| 96 |
+
|
| 97 |
+
First install the Sentence Transformers library:
|
| 98 |
+
|
| 99 |
+
```bash
|
| 100 |
+
pip install -U sentence-transformers
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
Then you can load this model and run inference.
|
| 104 |
+
```python
|
| 105 |
+
from sentence_transformers import SentenceTransformer
|
| 106 |
+
|
| 107 |
+
# Download from the 🤗 Hub
|
| 108 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 109 |
+
# Run inference
|
| 110 |
+
sentences = [
|
| 111 |
+
'A muertos y a idos, no hay amigos',
|
| 112 |
+
'A los vivos y presentes, siempre hay amigos.',
|
| 113 |
+
'Al buen callar llaman santo',
|
| 114 |
+
]
|
| 115 |
+
embeddings = model.encode(sentences)
|
| 116 |
+
print(embeddings.shape)
|
| 117 |
+
# [3, 1024]
|
| 118 |
+
|
| 119 |
+
# Get the similarity scores for the embeddings
|
| 120 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 121 |
+
print(similarities.shape)
|
| 122 |
+
# [3, 3]
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Direct Usage (Transformers)
|
| 127 |
+
|
| 128 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 129 |
+
|
| 130 |
+
</details>
|
| 131 |
+
-->
|
| 132 |
+
|
| 133 |
+
<!--
|
| 134 |
+
### Downstream Usage (Sentence Transformers)
|
| 135 |
+
|
| 136 |
+
You can finetune this model on your own dataset.
|
| 137 |
+
|
| 138 |
+
<details><summary>Click to expand</summary>
|
| 139 |
+
|
| 140 |
+
</details>
|
| 141 |
+
-->
|
| 142 |
+
|
| 143 |
+
<!--
|
| 144 |
+
### Out-of-Scope Use
|
| 145 |
+
|
| 146 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 147 |
+
-->
|
| 148 |
+
|
| 149 |
+
## Evaluation
|
| 150 |
+
|
| 151 |
+
### Metrics
|
| 152 |
+
|
| 153 |
+
#### Semantic Similarity
|
| 154 |
+
|
| 155 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 156 |
+
|
| 157 |
+
| Metric | Value |
|
| 158 |
+
|:--------------------|:-----------|
|
| 159 |
+
| pearson_cosine | 0.8335 |
|
| 160 |
+
| **spearman_cosine** | **0.8261** |
|
| 161 |
+
|
| 162 |
+
<!--
|
| 163 |
+
## Bias, Risks and Limitations
|
| 164 |
+
|
| 165 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 166 |
+
-->
|
| 167 |
+
|
| 168 |
+
<!--
|
| 169 |
+
### Recommendations
|
| 170 |
+
|
| 171 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 172 |
+
-->
|
| 173 |
+
|
| 174 |
+
## Training Details
|
| 175 |
+
|
| 176 |
+
### Training Dataset
|
| 177 |
+
|
| 178 |
+
#### csv
|
| 179 |
+
|
| 180 |
+
* Dataset: csv
|
| 181 |
+
* Size: 290 training samples
|
| 182 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 183 |
+
* Approximate statistics based on the first 290 samples:
|
| 184 |
+
| | sentence1 | sentence2 | label |
|
| 185 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 186 |
+
| type | string | string | int |
|
| 187 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 11.68 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.01 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> |
|
| 188 |
+
* Samples:
|
| 189 |
+
| sentence1 | sentence2 | label |
|
| 190 |
+
|:------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
|
| 191 |
+
| <code>Gota a gota, la mar se agota.</code> | <code>Con el pasar del tiempo se llega a alcanzar cualquier meta.</code> | <code>1</code> |
|
| 192 |
+
| <code>Dime de qué presumes y te diré de qué careces.</code> | <code>Dime de qué careces y te diré de qué dispones.</code> | <code>0</code> |
|
| 193 |
+
| <code>Cómo se vive, se muere.</code> | <code>De aquella forma que hemos vivido nuestra vida será de la forma en la que moriremos.</code> | <code>1</code> |
|
| 194 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 195 |
+
|
| 196 |
+
### Evaluation Dataset
|
| 197 |
+
|
| 198 |
+
#### Unnamed Dataset
|
| 199 |
+
|
| 200 |
+
* Size: 1,006 evaluation samples
|
| 201 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 202 |
+
* Approximate statistics based on the first 1000 samples:
|
| 203 |
+
| | sentence1 | sentence2 | label |
|
| 204 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 205 |
+
| type | string | string | int |
|
| 206 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.51 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.82 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~49.70%</li><li>1: ~50.30%</li></ul> |
|
| 207 |
+
* Samples:
|
| 208 |
+
| sentence1 | sentence2 | label |
|
| 209 |
+
|:---------------------------------------------|:-----------------------------------------------------------------------|:---------------|
|
| 210 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿A dó irá el buey que no are?</code> | <code>1</code> |
|
| 211 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿Adónde irá el buey que no are ni la mula que no cargue?</code> | <code>1</code> |
|
| 212 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿Adónde irá el buey que no are, sino al matadero?</code> | <code>1</code> |
|
| 213 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 214 |
+
|
| 215 |
+
### Training Hyperparameters
|
| 216 |
+
#### Non-Default Hyperparameters
|
| 217 |
+
|
| 218 |
+
- `eval_strategy`: steps
|
| 219 |
+
- `learning_rate`: 1e-05
|
| 220 |
+
- `num_train_epochs`: 4
|
| 221 |
+
- `lr_scheduler_type`: constant
|
| 222 |
+
- `load_best_model_at_end`: True
|
| 223 |
+
- `eval_on_start`: True
|
| 224 |
+
- `batch_sampler`: no_duplicates
|
| 225 |
+
|
| 226 |
+
#### All Hyperparameters
|
| 227 |
+
<details><summary>Click to expand</summary>
|
| 228 |
+
|
| 229 |
+
- `overwrite_output_dir`: False
|
| 230 |
+
- `do_predict`: False
|
| 231 |
+
- `eval_strategy`: steps
|
| 232 |
+
- `prediction_loss_only`: True
|
| 233 |
+
- `per_device_train_batch_size`: 8
|
| 234 |
+
- `per_device_eval_batch_size`: 8
|
| 235 |
+
- `per_gpu_train_batch_size`: None
|
| 236 |
+
- `per_gpu_eval_batch_size`: None
|
| 237 |
+
- `gradient_accumulation_steps`: 1
|
| 238 |
+
- `eval_accumulation_steps`: None
|
| 239 |
+
- `torch_empty_cache_steps`: None
|
| 240 |
+
- `learning_rate`: 1e-05
|
| 241 |
+
- `weight_decay`: 0.0
|
| 242 |
+
- `adam_beta1`: 0.9
|
| 243 |
+
- `adam_beta2`: 0.999
|
| 244 |
+
- `adam_epsilon`: 1e-08
|
| 245 |
+
- `max_grad_norm`: 1.0
|
| 246 |
+
- `num_train_epochs`: 4
|
| 247 |
+
- `max_steps`: -1
|
| 248 |
+
- `lr_scheduler_type`: constant
|
| 249 |
+
- `lr_scheduler_kwargs`: {}
|
| 250 |
+
- `warmup_ratio`: 0.0
|
| 251 |
+
- `warmup_steps`: 0
|
| 252 |
+
- `log_level`: passive
|
| 253 |
+
- `log_level_replica`: warning
|
| 254 |
+
- `log_on_each_node`: True
|
| 255 |
+
- `logging_nan_inf_filter`: True
|
| 256 |
+
- `save_safetensors`: True
|
| 257 |
+
- `save_on_each_node`: False
|
| 258 |
+
- `save_only_model`: False
|
| 259 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 260 |
+
- `no_cuda`: False
|
| 261 |
+
- `use_cpu`: False
|
| 262 |
+
- `use_mps_device`: False
|
| 263 |
+
- `seed`: 42
|
| 264 |
+
- `data_seed`: None
|
| 265 |
+
- `jit_mode_eval`: False
|
| 266 |
+
- `use_ipex`: False
|
| 267 |
+
- `bf16`: False
|
| 268 |
+
- `fp16`: False
|
| 269 |
+
- `fp16_opt_level`: O1
|
| 270 |
+
- `half_precision_backend`: auto
|
| 271 |
+
- `bf16_full_eval`: False
|
| 272 |
+
- `fp16_full_eval`: False
|
| 273 |
+
- `tf32`: None
|
| 274 |
+
- `local_rank`: 0
|
| 275 |
+
- `ddp_backend`: None
|
| 276 |
+
- `tpu_num_cores`: None
|
| 277 |
+
- `tpu_metrics_debug`: False
|
| 278 |
+
- `debug`: []
|
| 279 |
+
- `dataloader_drop_last`: False
|
| 280 |
+
- `dataloader_num_workers`: 0
|
| 281 |
+
- `dataloader_prefetch_factor`: None
|
| 282 |
+
- `past_index`: -1
|
| 283 |
+
- `disable_tqdm`: False
|
| 284 |
+
- `remove_unused_columns`: True
|
| 285 |
+
- `label_names`: None
|
| 286 |
+
- `load_best_model_at_end`: True
|
| 287 |
+
- `ignore_data_skip`: False
|
| 288 |
+
- `fsdp`: []
|
| 289 |
+
- `fsdp_min_num_params`: 0
|
| 290 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 291 |
+
- `tp_size`: 0
|
| 292 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 293 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 294 |
+
- `deepspeed`: None
|
| 295 |
+
- `label_smoothing_factor`: 0.0
|
| 296 |
+
- `optim`: adamw_torch
|
| 297 |
+
- `optim_args`: None
|
| 298 |
+
- `adafactor`: False
|
| 299 |
+
- `group_by_length`: False
|
| 300 |
+
- `length_column_name`: length
|
| 301 |
+
- `ddp_find_unused_parameters`: None
|
| 302 |
+
- `ddp_bucket_cap_mb`: None
|
| 303 |
+
- `ddp_broadcast_buffers`: False
|
| 304 |
+
- `dataloader_pin_memory`: True
|
| 305 |
+
- `dataloader_persistent_workers`: False
|
| 306 |
+
- `skip_memory_metrics`: True
|
| 307 |
+
- `use_legacy_prediction_loop`: False
|
| 308 |
+
- `push_to_hub`: False
|
| 309 |
+
- `resume_from_checkpoint`: None
|
| 310 |
+
- `hub_model_id`: None
|
| 311 |
+
- `hub_strategy`: every_save
|
| 312 |
+
- `hub_private_repo`: None
|
| 313 |
+
- `hub_always_push`: False
|
| 314 |
+
- `gradient_checkpointing`: False
|
| 315 |
+
- `gradient_checkpointing_kwargs`: None
|
| 316 |
+
- `include_inputs_for_metrics`: False
|
| 317 |
+
- `include_for_metrics`: []
|
| 318 |
+
- `eval_do_concat_batches`: True
|
| 319 |
+
- `fp16_backend`: auto
|
| 320 |
+
- `push_to_hub_model_id`: None
|
| 321 |
+
- `push_to_hub_organization`: None
|
| 322 |
+
- `mp_parameters`:
|
| 323 |
+
- `auto_find_batch_size`: False
|
| 324 |
+
- `full_determinism`: False
|
| 325 |
+
- `torchdynamo`: None
|
| 326 |
+
- `ray_scope`: last
|
| 327 |
+
- `ddp_timeout`: 1800
|
| 328 |
+
- `torch_compile`: False
|
| 329 |
+
- `torch_compile_backend`: None
|
| 330 |
+
- `torch_compile_mode`: None
|
| 331 |
+
- `dispatch_batches`: None
|
| 332 |
+
- `split_batches`: None
|
| 333 |
+
- `include_tokens_per_second`: False
|
| 334 |
+
- `include_num_input_tokens_seen`: False
|
| 335 |
+
- `neftune_noise_alpha`: None
|
| 336 |
+
- `optim_target_modules`: None
|
| 337 |
+
- `batch_eval_metrics`: False
|
| 338 |
+
- `eval_on_start`: True
|
| 339 |
+
- `use_liger_kernel`: False
|
| 340 |
+
- `eval_use_gather_object`: False
|
| 341 |
+
- `average_tokens_across_devices`: False
|
| 342 |
+
- `prompts`: None
|
| 343 |
+
- `batch_sampler`: no_duplicates
|
| 344 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 345 |
+
|
| 346 |
+
</details>
|
| 347 |
+
|
| 348 |
+
### Training Logs
|
| 349 |
+
| Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
|
| 350 |
+
|:------:|:----:|:-------------:|:---------------:|:---------------:|
|
| 351 |
+
| 0 | 0 | - | 0.1095 | 0.7843 |
|
| 352 |
+
| 0.1351 | 5 | 0.6784 | 0.0765 | 0.8123 |
|
| 353 |
+
| 0.2703 | 10 | 0.5088 | 0.0533 | 0.8303 |
|
| 354 |
+
| 0.4054 | 15 | 0.4364 | 0.0475 | 0.8339 |
|
| 355 |
+
| 0.5405 | 20 | 0.3456 | 0.0435 | 0.8345 |
|
| 356 |
+
| 0.6757 | 25 | 0.1423 | 0.0424 | 0.8324 |
|
| 357 |
+
| 0.8108 | 30 | 0.2852 | 0.0443 | 0.8271 |
|
| 358 |
+
| 0.9459 | 35 | 0.2616 | 0.0514 | 0.8262 |
|
| 359 |
+
| 1.0811 | 40 | 0.1451 | 0.0521 | 0.8232 |
|
| 360 |
+
| 1.2162 | 45 | 0.2046 | 0.0496 | 0.8221 |
|
| 361 |
+
| 1.3514 | 50 | 0.055 | 0.0516 | 0.8197 |
|
| 362 |
+
| 1.4865 | 55 | 0.0956 | 0.0545 | 0.8190 |
|
| 363 |
+
| 1.6216 | 60 | 0.1213 | 0.0533 | 0.8213 |
|
| 364 |
+
| 1.7568 | 65 | 0.2378 | 0.0464 | 0.8253 |
|
| 365 |
+
| 1.8919 | 70 | 0.2723 | 0.0458 | 0.8249 |
|
| 366 |
+
| 2.0270 | 75 | 0.0603 | 0.0467 | 0.8226 |
|
| 367 |
+
| 2.1622 | 80 | 0.1089 | 0.0415 | 0.8263 |
|
| 368 |
+
| 2.2973 | 85 | 0.0813 | 0.0417 | 0.8270 |
|
| 369 |
+
| 2.4324 | 90 | 0.0 | 0.0437 | 0.8250 |
|
| 370 |
+
| 2.5676 | 95 | 0.0436 | 0.0467 | 0.8242 |
|
| 371 |
+
| 2.7027 | 100 | 0.0 | 0.0451 | 0.8242 |
|
| 372 |
+
| 2.8378 | 105 | 0.0 | 0.0451 | 0.8243 |
|
| 373 |
+
| 2.9730 | 110 | 0.0271 | 0.0433 | 0.8243 |
|
| 374 |
+
| 3.1081 | 115 | 0.007 | 0.0502 | 0.8195 |
|
| 375 |
+
| 3.2432 | 120 | 0.1025 | 0.0523 | 0.8195 |
|
| 376 |
+
| 3.3784 | 125 | 0.1244 | 0.0527 | 0.8251 |
|
| 377 |
+
| 3.5135 | 130 | 0.0 | 0.0534 | 0.8262 |
|
| 378 |
+
| 3.6486 | 135 | 0.0259 | 0.0571 | 0.8262 |
|
| 379 |
+
| 3.7838 | 140 | 0.0939 | 0.0526 | 0.8273 |
|
| 380 |
+
| 3.9189 | 145 | 0.1038 | 0.0527 | 0.8261 |
|
| 381 |
+
|
| 382 |
+
|
| 383 |
+
### Framework Versions
|
| 384 |
+
- Python: 3.12.9
|
| 385 |
+
- Sentence Transformers: 3.4.1
|
| 386 |
+
- Transformers: 4.50.0
|
| 387 |
+
- PyTorch: 2.6.0+cpu
|
| 388 |
+
- Accelerate: 1.6.0
|
| 389 |
+
- Datasets: 3.5.0
|
| 390 |
+
- Tokenizers: 0.21.1
|
| 391 |
+
|
| 392 |
+
## Citation
|
| 393 |
+
|
| 394 |
+
### BibTeX
|
| 395 |
+
|
| 396 |
+
#### Sentence Transformers
|
| 397 |
+
```bibtex
|
| 398 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 399 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 400 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 401 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 402 |
+
month = "11",
|
| 403 |
+
year = "2019",
|
| 404 |
+
publisher = "Association for Computational Linguistics",
|
| 405 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 406 |
+
}
|
| 407 |
+
```
|
| 408 |
+
|
| 409 |
+
<!--
|
| 410 |
+
## Glossary
|
| 411 |
+
|
| 412 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 413 |
+
-->
|
| 414 |
+
|
| 415 |
+
<!--
|
| 416 |
+
## Model Card Authors
|
| 417 |
+
|
| 418 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 419 |
+
-->
|
| 420 |
+
|
| 421 |
+
<!--
|
| 422 |
+
## Model Card Contact
|
| 423 |
+
|
| 424 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 425 |
+
-->
|
checkpoint-148/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 1024,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 4096,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "xlm-roberta",
|
| 17 |
+
"num_attention_heads": 16,
|
| 18 |
+
"num_hidden_layers": 24,
|
| 19 |
+
"output_past": true,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.50.0",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 250002
|
| 27 |
+
}
|
checkpoint-148/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.1",
|
| 4 |
+
"transformers": "4.50.0",
|
| 5 |
+
"pytorch": "2.6.0+cpu"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-148/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:184f00394770de2bd5dbb0d1d15cc87926d44ed5251e869dd7a22b49b48a9100
|
| 3 |
+
size 2239607176
|
checkpoint-148/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-148/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:34abf973396f5c82ed62ced5f3ed810e8fdac393d8282da77c875424ddc22161
|
| 3 |
+
size 4471044921
|
checkpoint-148/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:289acee9b20675fcf33130539b2d32f8fe82f5b8a76ff22e77e5702e32d167f1
|
| 3 |
+
size 13990
|
checkpoint-148/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:146ef9b5e5cd6fc6dfefe2364ebf158e1371c154a444a4d236aaa6ca0953aa1b
|
| 3 |
+
size 1064
|
checkpoint-148/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
checkpoint-148/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
checkpoint-148/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
checkpoint-148/tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|
checkpoint-148/trainer_state.json
ADDED
|
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": 80,
|
| 3 |
+
"best_metric": 0.04149133339524269,
|
| 4 |
+
"best_model_checkpoint": "models/me5-large-retraining\\checkpoint-80",
|
| 5 |
+
"epoch": 4.0,
|
| 6 |
+
"eval_steps": 5,
|
| 7 |
+
"global_step": 148,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0,
|
| 14 |
+
"eval_loss": 0.10950354486703873,
|
| 15 |
+
"eval_pearson_cosine": 0.7806081242807599,
|
| 16 |
+
"eval_runtime": 154.7907,
|
| 17 |
+
"eval_samples_per_second": 6.499,
|
| 18 |
+
"eval_spearman_cosine": 0.7843279594448466,
|
| 19 |
+
"eval_steps_per_second": 0.814,
|
| 20 |
+
"step": 0
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.13513513513513514,
|
| 24 |
+
"grad_norm": 9.38223934173584,
|
| 25 |
+
"learning_rate": 1e-05,
|
| 26 |
+
"loss": 0.6784,
|
| 27 |
+
"step": 5
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.13513513513513514,
|
| 31 |
+
"eval_loss": 0.07647562772035599,
|
| 32 |
+
"eval_pearson_cosine": 0.8193313583571735,
|
| 33 |
+
"eval_runtime": 154.4069,
|
| 34 |
+
"eval_samples_per_second": 6.515,
|
| 35 |
+
"eval_spearman_cosine": 0.8122999445241028,
|
| 36 |
+
"eval_steps_per_second": 0.816,
|
| 37 |
+
"step": 5
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.2702702702702703,
|
| 41 |
+
"grad_norm": 8.665059089660645,
|
| 42 |
+
"learning_rate": 1e-05,
|
| 43 |
+
"loss": 0.5088,
|
| 44 |
+
"step": 10
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.2702702702702703,
|
| 48 |
+
"eval_loss": 0.05329965054988861,
|
| 49 |
+
"eval_pearson_cosine": 0.846437709431274,
|
| 50 |
+
"eval_runtime": 157.2408,
|
| 51 |
+
"eval_samples_per_second": 6.398,
|
| 52 |
+
"eval_spearman_cosine": 0.8303112726354404,
|
| 53 |
+
"eval_steps_per_second": 0.801,
|
| 54 |
+
"step": 10
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"epoch": 0.40540540540540543,
|
| 58 |
+
"grad_norm": 21.96602439880371,
|
| 59 |
+
"learning_rate": 1e-05,
|
| 60 |
+
"loss": 0.4364,
|
| 61 |
+
"step": 15
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"epoch": 0.40540540540540543,
|
| 65 |
+
"eval_loss": 0.047497160732746124,
|
| 66 |
+
"eval_pearson_cosine": 0.8497791216636505,
|
| 67 |
+
"eval_runtime": 153.8649,
|
| 68 |
+
"eval_samples_per_second": 6.538,
|
| 69 |
+
"eval_spearman_cosine": 0.8338916292060913,
|
| 70 |
+
"eval_steps_per_second": 0.819,
|
| 71 |
+
"step": 15
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"epoch": 0.5405405405405406,
|
| 75 |
+
"grad_norm": 10.698002815246582,
|
| 76 |
+
"learning_rate": 1e-05,
|
| 77 |
+
"loss": 0.3456,
|
| 78 |
+
"step": 20
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"epoch": 0.5405405405405406,
|
| 82 |
+
"eval_loss": 0.043546345084905624,
|
| 83 |
+
"eval_pearson_cosine": 0.8481768671521202,
|
| 84 |
+
"eval_runtime": 154.4013,
|
| 85 |
+
"eval_samples_per_second": 6.515,
|
| 86 |
+
"eval_spearman_cosine": 0.8344803713886917,
|
| 87 |
+
"eval_steps_per_second": 0.816,
|
| 88 |
+
"step": 20
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"epoch": 0.6756756756756757,
|
| 92 |
+
"grad_norm": 0.0,
|
| 93 |
+
"learning_rate": 1e-05,
|
| 94 |
+
"loss": 0.1423,
|
| 95 |
+
"step": 25
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"epoch": 0.6756756756756757,
|
| 99 |
+
"eval_loss": 0.042350731790065765,
|
| 100 |
+
"eval_pearson_cosine": 0.8419294236114762,
|
| 101 |
+
"eval_runtime": 153.4308,
|
| 102 |
+
"eval_samples_per_second": 6.557,
|
| 103 |
+
"eval_spearman_cosine": 0.8324197823497284,
|
| 104 |
+
"eval_steps_per_second": 0.821,
|
| 105 |
+
"step": 25
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.8108108108108109,
|
| 109 |
+
"grad_norm": 11.502903938293457,
|
| 110 |
+
"learning_rate": 1e-05,
|
| 111 |
+
"loss": 0.2852,
|
| 112 |
+
"step": 30
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"epoch": 0.8108108108108109,
|
| 116 |
+
"eval_loss": 0.04431174322962761,
|
| 117 |
+
"eval_pearson_cosine": 0.8311833878571917,
|
| 118 |
+
"eval_runtime": 153.1117,
|
| 119 |
+
"eval_samples_per_second": 6.57,
|
| 120 |
+
"eval_spearman_cosine": 0.8270800450821792,
|
| 121 |
+
"eval_steps_per_second": 0.823,
|
| 122 |
+
"step": 30
|
| 123 |
+
},
|
| 124 |
+
{
|
| 125 |
+
"epoch": 0.9459459459459459,
|
| 126 |
+
"grad_norm": 13.956666946411133,
|
| 127 |
+
"learning_rate": 1e-05,
|
| 128 |
+
"loss": 0.2616,
|
| 129 |
+
"step": 35
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.9459459459459459,
|
| 133 |
+
"eval_loss": 0.05144113302230835,
|
| 134 |
+
"eval_pearson_cosine": 0.8323883964862309,
|
| 135 |
+
"eval_runtime": 153.6257,
|
| 136 |
+
"eval_samples_per_second": 6.548,
|
| 137 |
+
"eval_spearman_cosine": 0.8261627064456549,
|
| 138 |
+
"eval_steps_per_second": 0.82,
|
| 139 |
+
"step": 35
|
| 140 |
+
},
|
| 141 |
+
{
|
| 142 |
+
"epoch": 1.0810810810810811,
|
| 143 |
+
"grad_norm": 0.0,
|
| 144 |
+
"learning_rate": 1e-05,
|
| 145 |
+
"loss": 0.1451,
|
| 146 |
+
"step": 40
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"epoch": 1.0810810810810811,
|
| 150 |
+
"eval_loss": 0.052108317613601685,
|
| 151 |
+
"eval_pearson_cosine": 0.8322596480425719,
|
| 152 |
+
"eval_runtime": 152.7732,
|
| 153 |
+
"eval_samples_per_second": 6.585,
|
| 154 |
+
"eval_spearman_cosine": 0.8232463910787938,
|
| 155 |
+
"eval_steps_per_second": 0.825,
|
| 156 |
+
"step": 40
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 1.2162162162162162,
|
| 160 |
+
"grad_norm": 11.031551361083984,
|
| 161 |
+
"learning_rate": 1e-05,
|
| 162 |
+
"loss": 0.2046,
|
| 163 |
+
"step": 45
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 1.2162162162162162,
|
| 167 |
+
"eval_loss": 0.049648430198431015,
|
| 168 |
+
"eval_pearson_cosine": 0.8345968763719022,
|
| 169 |
+
"eval_runtime": 151.5419,
|
| 170 |
+
"eval_samples_per_second": 6.638,
|
| 171 |
+
"eval_spearman_cosine": 0.8220928743948337,
|
| 172 |
+
"eval_steps_per_second": 0.831,
|
| 173 |
+
"step": 45
|
| 174 |
+
},
|
| 175 |
+
{
|
| 176 |
+
"epoch": 1.3513513513513513,
|
| 177 |
+
"grad_norm": 0.0,
|
| 178 |
+
"learning_rate": 1e-05,
|
| 179 |
+
"loss": 0.055,
|
| 180 |
+
"step": 50
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"epoch": 1.3513513513513513,
|
| 184 |
+
"eval_loss": 0.05155247077345848,
|
| 185 |
+
"eval_pearson_cosine": 0.8295312877735412,
|
| 186 |
+
"eval_runtime": 152.4645,
|
| 187 |
+
"eval_samples_per_second": 6.598,
|
| 188 |
+
"eval_spearman_cosine": 0.8197002635410278,
|
| 189 |
+
"eval_steps_per_second": 0.826,
|
| 190 |
+
"step": 50
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"epoch": 1.4864864864864864,
|
| 194 |
+
"grad_norm": 0.0,
|
| 195 |
+
"learning_rate": 1e-05,
|
| 196 |
+
"loss": 0.0956,
|
| 197 |
+
"step": 55
|
| 198 |
+
},
|
| 199 |
+
{
|
| 200 |
+
"epoch": 1.4864864864864864,
|
| 201 |
+
"eval_loss": 0.05453842505812645,
|
| 202 |
+
"eval_pearson_cosine": 0.8258612961974536,
|
| 203 |
+
"eval_runtime": 151.2464,
|
| 204 |
+
"eval_samples_per_second": 6.651,
|
| 205 |
+
"eval_spearman_cosine": 0.8190362223126076,
|
| 206 |
+
"eval_steps_per_second": 0.833,
|
| 207 |
+
"step": 55
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 1.6216216216216215,
|
| 211 |
+
"grad_norm": 10.073129653930664,
|
| 212 |
+
"learning_rate": 1e-05,
|
| 213 |
+
"loss": 0.1213,
|
| 214 |
+
"step": 60
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"epoch": 1.6216216216216215,
|
| 218 |
+
"eval_loss": 0.05331311747431755,
|
| 219 |
+
"eval_pearson_cosine": 0.8280490163439709,
|
| 220 |
+
"eval_runtime": 151.9002,
|
| 221 |
+
"eval_samples_per_second": 6.623,
|
| 222 |
+
"eval_spearman_cosine": 0.8212679517806181,
|
| 223 |
+
"eval_steps_per_second": 0.829,
|
| 224 |
+
"step": 60
|
| 225 |
+
},
|
| 226 |
+
{
|
| 227 |
+
"epoch": 1.7567567567567568,
|
| 228 |
+
"grad_norm": 8.610294342041016,
|
| 229 |
+
"learning_rate": 1e-05,
|
| 230 |
+
"loss": 0.2378,
|
| 231 |
+
"step": 65
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"epoch": 1.7567567567567568,
|
| 235 |
+
"eval_loss": 0.04638493061065674,
|
| 236 |
+
"eval_pearson_cosine": 0.8348764332747338,
|
| 237 |
+
"eval_runtime": 151.3483,
|
| 238 |
+
"eval_samples_per_second": 6.647,
|
| 239 |
+
"eval_spearman_cosine": 0.8253343633484949,
|
| 240 |
+
"eval_steps_per_second": 0.833,
|
| 241 |
+
"step": 65
|
| 242 |
+
},
|
| 243 |
+
{
|
| 244 |
+
"epoch": 1.8918918918918919,
|
| 245 |
+
"grad_norm": 7.2265729904174805,
|
| 246 |
+
"learning_rate": 1e-05,
|
| 247 |
+
"loss": 0.2723,
|
| 248 |
+
"step": 70
|
| 249 |
+
},
|
| 250 |
+
{
|
| 251 |
+
"epoch": 1.8918918918918919,
|
| 252 |
+
"eval_loss": 0.04580773040652275,
|
| 253 |
+
"eval_pearson_cosine": 0.8327080612027193,
|
| 254 |
+
"eval_runtime": 151.0951,
|
| 255 |
+
"eval_samples_per_second": 6.658,
|
| 256 |
+
"eval_spearman_cosine": 0.8249373111883099,
|
| 257 |
+
"eval_steps_per_second": 0.834,
|
| 258 |
+
"step": 70
|
| 259 |
+
},
|
| 260 |
+
{
|
| 261 |
+
"epoch": 2.027027027027027,
|
| 262 |
+
"grad_norm": 0.0,
|
| 263 |
+
"learning_rate": 1e-05,
|
| 264 |
+
"loss": 0.0603,
|
| 265 |
+
"step": 75
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"epoch": 2.027027027027027,
|
| 269 |
+
"eval_loss": 0.04667947068810463,
|
| 270 |
+
"eval_pearson_cosine": 0.8292172905350813,
|
| 271 |
+
"eval_runtime": 150.817,
|
| 272 |
+
"eval_samples_per_second": 6.67,
|
| 273 |
+
"eval_spearman_cosine": 0.8226234223032437,
|
| 274 |
+
"eval_steps_per_second": 0.835,
|
| 275 |
+
"step": 75
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 2.1621621621621623,
|
| 279 |
+
"grad_norm": 7.278922080993652,
|
| 280 |
+
"learning_rate": 1e-05,
|
| 281 |
+
"loss": 0.1089,
|
| 282 |
+
"step": 80
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 2.1621621621621623,
|
| 286 |
+
"eval_loss": 0.04149133339524269,
|
| 287 |
+
"eval_pearson_cosine": 0.8348787263877363,
|
| 288 |
+
"eval_runtime": 151.9077,
|
| 289 |
+
"eval_samples_per_second": 6.622,
|
| 290 |
+
"eval_spearman_cosine": 0.8262517044196894,
|
| 291 |
+
"eval_steps_per_second": 0.829,
|
| 292 |
+
"step": 80
|
| 293 |
+
},
|
| 294 |
+
{
|
| 295 |
+
"epoch": 2.2972972972972974,
|
| 296 |
+
"grad_norm": 0.0,
|
| 297 |
+
"learning_rate": 1e-05,
|
| 298 |
+
"loss": 0.0813,
|
| 299 |
+
"step": 85
|
| 300 |
+
},
|
| 301 |
+
{
|
| 302 |
+
"epoch": 2.2972972972972974,
|
| 303 |
+
"eval_loss": 0.041691090911626816,
|
| 304 |
+
"eval_pearson_cosine": 0.834739922043313,
|
| 305 |
+
"eval_runtime": 151.4069,
|
| 306 |
+
"eval_samples_per_second": 6.644,
|
| 307 |
+
"eval_spearman_cosine": 0.8269978977904043,
|
| 308 |
+
"eval_steps_per_second": 0.832,
|
| 309 |
+
"step": 85
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"epoch": 2.4324324324324325,
|
| 313 |
+
"grad_norm": 0.0,
|
| 314 |
+
"learning_rate": 1e-05,
|
| 315 |
+
"loss": 0.0,
|
| 316 |
+
"step": 90
|
| 317 |
+
},
|
| 318 |
+
{
|
| 319 |
+
"epoch": 2.4324324324324325,
|
| 320 |
+
"eval_loss": 0.043681543320417404,
|
| 321 |
+
"eval_pearson_cosine": 0.8300953895591171,
|
| 322 |
+
"eval_runtime": 151.2024,
|
| 323 |
+
"eval_samples_per_second": 6.653,
|
| 324 |
+
"eval_spearman_cosine": 0.8249920776743955,
|
| 325 |
+
"eval_steps_per_second": 0.833,
|
| 326 |
+
"step": 90
|
| 327 |
+
},
|
| 328 |
+
{
|
| 329 |
+
"epoch": 2.5675675675675675,
|
| 330 |
+
"grad_norm": 0.0,
|
| 331 |
+
"learning_rate": 1e-05,
|
| 332 |
+
"loss": 0.0436,
|
| 333 |
+
"step": 95
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"epoch": 2.5675675675675675,
|
| 337 |
+
"eval_loss": 0.04666070267558098,
|
| 338 |
+
"eval_pearson_cosine": 0.8280036278693699,
|
| 339 |
+
"eval_runtime": 150.6994,
|
| 340 |
+
"eval_samples_per_second": 6.676,
|
| 341 |
+
"eval_spearman_cosine": 0.8241911129581995,
|
| 342 |
+
"eval_steps_per_second": 0.836,
|
| 343 |
+
"step": 95
|
| 344 |
+
},
|
| 345 |
+
{
|
| 346 |
+
"epoch": 2.7027027027027026,
|
| 347 |
+
"grad_norm": 0.0,
|
| 348 |
+
"learning_rate": 1e-05,
|
| 349 |
+
"loss": 0.0,
|
| 350 |
+
"step": 100
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"epoch": 2.7027027027027026,
|
| 354 |
+
"eval_loss": 0.04513184353709221,
|
| 355 |
+
"eval_pearson_cosine": 0.827662426497365,
|
| 356 |
+
"eval_runtime": 151.7254,
|
| 357 |
+
"eval_samples_per_second": 6.63,
|
| 358 |
+
"eval_spearman_cosine": 0.8241911153867979,
|
| 359 |
+
"eval_steps_per_second": 0.83,
|
| 360 |
+
"step": 100
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"epoch": 2.8378378378378377,
|
| 364 |
+
"grad_norm": 0.0,
|
| 365 |
+
"learning_rate": 1e-05,
|
| 366 |
+
"loss": 0.0,
|
| 367 |
+
"step": 105
|
| 368 |
+
},
|
| 369 |
+
{
|
| 370 |
+
"epoch": 2.8378378378378377,
|
| 371 |
+
"eval_loss": 0.045100126415491104,
|
| 372 |
+
"eval_pearson_cosine": 0.8271686930217653,
|
| 373 |
+
"eval_runtime": 150.6791,
|
| 374 |
+
"eval_samples_per_second": 6.676,
|
| 375 |
+
"eval_spearman_cosine": 0.8242595734942031,
|
| 376 |
+
"eval_steps_per_second": 0.836,
|
| 377 |
+
"step": 105
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"epoch": 2.972972972972973,
|
| 381 |
+
"grad_norm": 0.0,
|
| 382 |
+
"learning_rate": 1e-05,
|
| 383 |
+
"loss": 0.0271,
|
| 384 |
+
"step": 110
|
| 385 |
+
},
|
| 386 |
+
{
|
| 387 |
+
"epoch": 2.972972972972973,
|
| 388 |
+
"eval_loss": 0.04326998442411423,
|
| 389 |
+
"eval_pearson_cosine": 0.8242998475213165,
|
| 390 |
+
"eval_runtime": 151.5644,
|
| 391 |
+
"eval_samples_per_second": 6.637,
|
| 392 |
+
"eval_spearman_cosine": 0.8243348749833265,
|
| 393 |
+
"eval_steps_per_second": 0.831,
|
| 394 |
+
"step": 110
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 3.108108108108108,
|
| 398 |
+
"grad_norm": 0.0,
|
| 399 |
+
"learning_rate": 1e-05,
|
| 400 |
+
"loss": 0.007,
|
| 401 |
+
"step": 115
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 3.108108108108108,
|
| 405 |
+
"eval_loss": 0.050163887441158295,
|
| 406 |
+
"eval_pearson_cosine": 0.8100599157021782,
|
| 407 |
+
"eval_runtime": 149.8939,
|
| 408 |
+
"eval_samples_per_second": 6.711,
|
| 409 |
+
"eval_spearman_cosine": 0.8195085832550942,
|
| 410 |
+
"eval_steps_per_second": 0.841,
|
| 411 |
+
"step": 115
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"epoch": 3.2432432432432434,
|
| 415 |
+
"grad_norm": 5.909173011779785,
|
| 416 |
+
"learning_rate": 1e-05,
|
| 417 |
+
"loss": 0.1025,
|
| 418 |
+
"step": 120
|
| 419 |
+
},
|
| 420 |
+
{
|
| 421 |
+
"epoch": 3.2432432432432434,
|
| 422 |
+
"eval_loss": 0.052336592227220535,
|
| 423 |
+
"eval_pearson_cosine": 0.8092739374985023,
|
| 424 |
+
"eval_runtime": 151.2544,
|
| 425 |
+
"eval_samples_per_second": 6.651,
|
| 426 |
+
"eval_spearman_cosine": 0.8194743493718913,
|
| 427 |
+
"eval_steps_per_second": 0.833,
|
| 428 |
+
"step": 120
|
| 429 |
+
},
|
| 430 |
+
{
|
| 431 |
+
"epoch": 3.3783783783783785,
|
| 432 |
+
"grad_norm": 0.0,
|
| 433 |
+
"learning_rate": 1e-05,
|
| 434 |
+
"loss": 0.1244,
|
| 435 |
+
"step": 125
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"epoch": 3.3783783783783785,
|
| 439 |
+
"eval_loss": 0.05269436165690422,
|
| 440 |
+
"eval_pearson_cosine": 0.8212737827789367,
|
| 441 |
+
"eval_runtime": 150.843,
|
| 442 |
+
"eval_samples_per_second": 6.669,
|
| 443 |
+
"eval_spearman_cosine": 0.8250605382131625,
|
| 444 |
+
"eval_steps_per_second": 0.835,
|
| 445 |
+
"step": 125
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"epoch": 3.5135135135135136,
|
| 449 |
+
"grad_norm": 0.0,
|
| 450 |
+
"learning_rate": 1e-05,
|
| 451 |
+
"loss": 0.0,
|
| 452 |
+
"step": 130
|
| 453 |
+
},
|
| 454 |
+
{
|
| 455 |
+
"epoch": 3.5135135135135136,
|
| 456 |
+
"eval_loss": 0.05343884229660034,
|
| 457 |
+
"eval_pearson_cosine": 0.8257663666576973,
|
| 458 |
+
"eval_runtime": 150.9582,
|
| 459 |
+
"eval_samples_per_second": 6.664,
|
| 460 |
+
"eval_spearman_cosine": 0.8261900896885362,
|
| 461 |
+
"eval_steps_per_second": 0.835,
|
| 462 |
+
"step": 130
|
| 463 |
+
},
|
| 464 |
+
{
|
| 465 |
+
"epoch": 3.6486486486486487,
|
| 466 |
+
"grad_norm": 0.0,
|
| 467 |
+
"learning_rate": 1e-05,
|
| 468 |
+
"loss": 0.0259,
|
| 469 |
+
"step": 135
|
| 470 |
+
},
|
| 471 |
+
{
|
| 472 |
+
"epoch": 3.6486486486486487,
|
| 473 |
+
"eval_loss": 0.05709109827876091,
|
| 474 |
+
"eval_pearson_cosine": 0.8294106767298322,
|
| 475 |
+
"eval_runtime": 151.0358,
|
| 476 |
+
"eval_samples_per_second": 6.661,
|
| 477 |
+
"eval_spearman_cosine": 0.826217475365987,
|
| 478 |
+
"eval_steps_per_second": 0.834,
|
| 479 |
+
"step": 135
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"epoch": 3.7837837837837838,
|
| 483 |
+
"grad_norm": 0.0,
|
| 484 |
+
"learning_rate": 1e-05,
|
| 485 |
+
"loss": 0.0939,
|
| 486 |
+
"step": 140
|
| 487 |
+
},
|
| 488 |
+
{
|
| 489 |
+
"epoch": 3.7837837837837838,
|
| 490 |
+
"eval_loss": 0.05264894291758537,
|
| 491 |
+
"eval_pearson_cosine": 0.8333850683405307,
|
| 492 |
+
"eval_runtime": 151.069,
|
| 493 |
+
"eval_samples_per_second": 6.659,
|
| 494 |
+
"eval_spearman_cosine": 0.8273128026466706,
|
| 495 |
+
"eval_steps_per_second": 0.834,
|
| 496 |
+
"step": 140
|
| 497 |
+
},
|
| 498 |
+
{
|
| 499 |
+
"epoch": 3.918918918918919,
|
| 500 |
+
"grad_norm": 7.900262832641602,
|
| 501 |
+
"learning_rate": 1e-05,
|
| 502 |
+
"loss": 0.1038,
|
| 503 |
+
"step": 145
|
| 504 |
+
},
|
| 505 |
+
{
|
| 506 |
+
"epoch": 3.918918918918919,
|
| 507 |
+
"eval_loss": 0.0527377724647522,
|
| 508 |
+
"eval_pearson_cosine": 0.8334934833047165,
|
| 509 |
+
"eval_runtime": 150.8011,
|
| 510 |
+
"eval_samples_per_second": 6.671,
|
| 511 |
+
"eval_spearman_cosine": 0.8261353280714282,
|
| 512 |
+
"eval_steps_per_second": 0.836,
|
| 513 |
+
"step": 145
|
| 514 |
+
}
|
| 515 |
+
],
|
| 516 |
+
"logging_steps": 5,
|
| 517 |
+
"max_steps": 148,
|
| 518 |
+
"num_input_tokens_seen": 0,
|
| 519 |
+
"num_train_epochs": 4,
|
| 520 |
+
"save_steps": 10,
|
| 521 |
+
"stateful_callbacks": {
|
| 522 |
+
"TrainerControl": {
|
| 523 |
+
"args": {
|
| 524 |
+
"should_epoch_stop": false,
|
| 525 |
+
"should_evaluate": false,
|
| 526 |
+
"should_log": false,
|
| 527 |
+
"should_save": true,
|
| 528 |
+
"should_training_stop": true
|
| 529 |
+
},
|
| 530 |
+
"attributes": {}
|
| 531 |
+
}
|
| 532 |
+
},
|
| 533 |
+
"total_flos": 0.0,
|
| 534 |
+
"train_batch_size": 8,
|
| 535 |
+
"trial_name": null,
|
| 536 |
+
"trial_params": null
|
| 537 |
+
}
|
checkpoint-148/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c6195991b123e7d9abf5d6fe39d2acc574f894288d505cb696178ae95f5cb07f
|
| 3 |
+
size 5624
|
checkpoint-20/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
checkpoint-20/README.md
ADDED
|
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:290
|
| 8 |
+
- loss:OnlineContrastiveLoss
|
| 9 |
+
base_model: intfloat/multilingual-e5-large
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Antes se coge al mentiroso que al cojo
|
| 12 |
+
sentences:
|
| 13 |
+
- A escudero pobre, taza de plata y cántaro de cobre
|
| 14 |
+
- En río revuelto, pesca abundante
|
| 15 |
+
- Se ayuda primero al necesitado que al engañador.
|
| 16 |
+
- source_sentence: Asno de muchos, lobos lo comen
|
| 17 |
+
sentences:
|
| 18 |
+
- Sabio entre sabios, amigos lo respetan.
|
| 19 |
+
- El que mucho madruga más hace que el que Dios ayuda.
|
| 20 |
+
- Se pilla antes a un mentiroso que a un cojo
|
| 21 |
+
- source_sentence: Al buey por el asta, y al hombre por la palabra
|
| 22 |
+
sentences:
|
| 23 |
+
- Si no quieres arroz con leche, toma tres tazas
|
| 24 |
+
- Al hombre por la palabra, y al buey por el cuerno ata
|
| 25 |
+
- Ese no es tu amigo, sino alguien que siempre busca estar rodeado de bullicio y
|
| 26 |
+
actividad.
|
| 27 |
+
- source_sentence: Al médico, confesor y letrado, hablarles claro
|
| 28 |
+
sentences:
|
| 29 |
+
- Al médico, confesor y letrado, no le hayas engañado
|
| 30 |
+
- Más vale a quien Dios ayuda que quien mucho madruga
|
| 31 |
+
- Al que anda entre la miel, algo se le pega
|
| 32 |
+
- source_sentence: A muertos y a idos, no hay amigos
|
| 33 |
+
sentences:
|
| 34 |
+
- Al buen callar llaman santo
|
| 35 |
+
- A los vivos y presentes, siempre hay amigos.
|
| 36 |
+
- Al que de prestado se viste, en la calle lo desnudan
|
| 37 |
+
pipeline_tag: sentence-similarity
|
| 38 |
+
library_name: sentence-transformers
|
| 39 |
+
metrics:
|
| 40 |
+
- pearson_cosine
|
| 41 |
+
- spearman_cosine
|
| 42 |
+
model-index:
|
| 43 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-large
|
| 44 |
+
results:
|
| 45 |
+
- task:
|
| 46 |
+
type: semantic-similarity
|
| 47 |
+
name: Semantic Similarity
|
| 48 |
+
dataset:
|
| 49 |
+
name: Unknown
|
| 50 |
+
type: unknown
|
| 51 |
+
metrics:
|
| 52 |
+
- type: pearson_cosine
|
| 53 |
+
value: 0.8481768671521202
|
| 54 |
+
name: Pearson Cosine
|
| 55 |
+
- type: spearman_cosine
|
| 56 |
+
value: 0.8344803713886917
|
| 57 |
+
name: Spearman Cosine
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large
|
| 61 |
+
|
| 62 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 63 |
+
|
| 64 |
+
## Model Details
|
| 65 |
+
|
| 66 |
+
### Model Description
|
| 67 |
+
- **Model Type:** Sentence Transformer
|
| 68 |
+
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 -->
|
| 69 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 70 |
+
- **Output Dimensionality:** 1024 dimensions
|
| 71 |
+
- **Similarity Function:** Cosine Similarity
|
| 72 |
+
- **Training Dataset:**
|
| 73 |
+
- csv
|
| 74 |
+
<!-- - **Language:** Unknown -->
|
| 75 |
+
<!-- - **License:** Unknown -->
|
| 76 |
+
|
| 77 |
+
### Model Sources
|
| 78 |
+
|
| 79 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 80 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 81 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 82 |
+
|
| 83 |
+
### Full Model Architecture
|
| 84 |
+
|
| 85 |
+
```
|
| 86 |
+
SentenceTransformer(
|
| 87 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 88 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 89 |
+
(2): Normalize()
|
| 90 |
+
)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Usage
|
| 94 |
+
|
| 95 |
+
### Direct Usage (Sentence Transformers)
|
| 96 |
+
|
| 97 |
+
First install the Sentence Transformers library:
|
| 98 |
+
|
| 99 |
+
```bash
|
| 100 |
+
pip install -U sentence-transformers
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
Then you can load this model and run inference.
|
| 104 |
+
```python
|
| 105 |
+
from sentence_transformers import SentenceTransformer
|
| 106 |
+
|
| 107 |
+
# Download from the 🤗 Hub
|
| 108 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 109 |
+
# Run inference
|
| 110 |
+
sentences = [
|
| 111 |
+
'A muertos y a idos, no hay amigos',
|
| 112 |
+
'A los vivos y presentes, siempre hay amigos.',
|
| 113 |
+
'Al buen callar llaman santo',
|
| 114 |
+
]
|
| 115 |
+
embeddings = model.encode(sentences)
|
| 116 |
+
print(embeddings.shape)
|
| 117 |
+
# [3, 1024]
|
| 118 |
+
|
| 119 |
+
# Get the similarity scores for the embeddings
|
| 120 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 121 |
+
print(similarities.shape)
|
| 122 |
+
# [3, 3]
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Direct Usage (Transformers)
|
| 127 |
+
|
| 128 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 129 |
+
|
| 130 |
+
</details>
|
| 131 |
+
-->
|
| 132 |
+
|
| 133 |
+
<!--
|
| 134 |
+
### Downstream Usage (Sentence Transformers)
|
| 135 |
+
|
| 136 |
+
You can finetune this model on your own dataset.
|
| 137 |
+
|
| 138 |
+
<details><summary>Click to expand</summary>
|
| 139 |
+
|
| 140 |
+
</details>
|
| 141 |
+
-->
|
| 142 |
+
|
| 143 |
+
<!--
|
| 144 |
+
### Out-of-Scope Use
|
| 145 |
+
|
| 146 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 147 |
+
-->
|
| 148 |
+
|
| 149 |
+
## Evaluation
|
| 150 |
+
|
| 151 |
+
### Metrics
|
| 152 |
+
|
| 153 |
+
#### Semantic Similarity
|
| 154 |
+
|
| 155 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 156 |
+
|
| 157 |
+
| Metric | Value |
|
| 158 |
+
|:--------------------|:-----------|
|
| 159 |
+
| pearson_cosine | 0.8482 |
|
| 160 |
+
| **spearman_cosine** | **0.8345** |
|
| 161 |
+
|
| 162 |
+
<!--
|
| 163 |
+
## Bias, Risks and Limitations
|
| 164 |
+
|
| 165 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 166 |
+
-->
|
| 167 |
+
|
| 168 |
+
<!--
|
| 169 |
+
### Recommendations
|
| 170 |
+
|
| 171 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 172 |
+
-->
|
| 173 |
+
|
| 174 |
+
## Training Details
|
| 175 |
+
|
| 176 |
+
### Training Dataset
|
| 177 |
+
|
| 178 |
+
#### csv
|
| 179 |
+
|
| 180 |
+
* Dataset: csv
|
| 181 |
+
* Size: 290 training samples
|
| 182 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 183 |
+
* Approximate statistics based on the first 290 samples:
|
| 184 |
+
| | sentence1 | sentence2 | label |
|
| 185 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 186 |
+
| type | string | string | int |
|
| 187 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 11.68 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.01 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> |
|
| 188 |
+
* Samples:
|
| 189 |
+
| sentence1 | sentence2 | label |
|
| 190 |
+
|:------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
|
| 191 |
+
| <code>Gota a gota, la mar se agota.</code> | <code>Con el pasar del tiempo se llega a alcanzar cualquier meta.</code> | <code>1</code> |
|
| 192 |
+
| <code>Dime de qué presumes y te diré de qué careces.</code> | <code>Dime de qué careces y te diré de qué dispones.</code> | <code>0</code> |
|
| 193 |
+
| <code>Cómo se vive, se muere.</code> | <code>De aquella forma que hemos vivido nuestra vida será de la forma en la que moriremos.</code> | <code>1</code> |
|
| 194 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 195 |
+
|
| 196 |
+
### Evaluation Dataset
|
| 197 |
+
|
| 198 |
+
#### Unnamed Dataset
|
| 199 |
+
|
| 200 |
+
* Size: 1,006 evaluation samples
|
| 201 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 202 |
+
* Approximate statistics based on the first 1000 samples:
|
| 203 |
+
| | sentence1 | sentence2 | label |
|
| 204 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 205 |
+
| type | string | string | int |
|
| 206 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.51 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.82 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~49.70%</li><li>1: ~50.30%</li></ul> |
|
| 207 |
+
* Samples:
|
| 208 |
+
| sentence1 | sentence2 | label |
|
| 209 |
+
|:---------------------------------------------|:-----------------------------------------------------------------------|:---------------|
|
| 210 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿A dó irá el buey que no are?</code> | <code>1</code> |
|
| 211 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿Adónde irá el buey que no are ni la mula que no cargue?</code> | <code>1</code> |
|
| 212 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿Adónde irá el buey que no are, sino al matadero?</code> | <code>1</code> |
|
| 213 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 214 |
+
|
| 215 |
+
### Training Hyperparameters
|
| 216 |
+
#### Non-Default Hyperparameters
|
| 217 |
+
|
| 218 |
+
- `eval_strategy`: steps
|
| 219 |
+
- `learning_rate`: 1e-05
|
| 220 |
+
- `num_train_epochs`: 1
|
| 221 |
+
- `lr_scheduler_type`: constant
|
| 222 |
+
- `load_best_model_at_end`: True
|
| 223 |
+
- `eval_on_start`: True
|
| 224 |
+
- `batch_sampler`: no_duplicates
|
| 225 |
+
|
| 226 |
+
#### All Hyperparameters
|
| 227 |
+
<details><summary>Click to expand</summary>
|
| 228 |
+
|
| 229 |
+
- `overwrite_output_dir`: False
|
| 230 |
+
- `do_predict`: False
|
| 231 |
+
- `eval_strategy`: steps
|
| 232 |
+
- `prediction_loss_only`: True
|
| 233 |
+
- `per_device_train_batch_size`: 8
|
| 234 |
+
- `per_device_eval_batch_size`: 8
|
| 235 |
+
- `per_gpu_train_batch_size`: None
|
| 236 |
+
- `per_gpu_eval_batch_size`: None
|
| 237 |
+
- `gradient_accumulation_steps`: 1
|
| 238 |
+
- `eval_accumulation_steps`: None
|
| 239 |
+
- `torch_empty_cache_steps`: None
|
| 240 |
+
- `learning_rate`: 1e-05
|
| 241 |
+
- `weight_decay`: 0.0
|
| 242 |
+
- `adam_beta1`: 0.9
|
| 243 |
+
- `adam_beta2`: 0.999
|
| 244 |
+
- `adam_epsilon`: 1e-08
|
| 245 |
+
- `max_grad_norm`: 1.0
|
| 246 |
+
- `num_train_epochs`: 1
|
| 247 |
+
- `max_steps`: -1
|
| 248 |
+
- `lr_scheduler_type`: constant
|
| 249 |
+
- `lr_scheduler_kwargs`: {}
|
| 250 |
+
- `warmup_ratio`: 0.0
|
| 251 |
+
- `warmup_steps`: 0
|
| 252 |
+
- `log_level`: passive
|
| 253 |
+
- `log_level_replica`: warning
|
| 254 |
+
- `log_on_each_node`: True
|
| 255 |
+
- `logging_nan_inf_filter`: True
|
| 256 |
+
- `save_safetensors`: True
|
| 257 |
+
- `save_on_each_node`: False
|
| 258 |
+
- `save_only_model`: False
|
| 259 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 260 |
+
- `no_cuda`: False
|
| 261 |
+
- `use_cpu`: False
|
| 262 |
+
- `use_mps_device`: False
|
| 263 |
+
- `seed`: 42
|
| 264 |
+
- `data_seed`: None
|
| 265 |
+
- `jit_mode_eval`: False
|
| 266 |
+
- `use_ipex`: False
|
| 267 |
+
- `bf16`: False
|
| 268 |
+
- `fp16`: False
|
| 269 |
+
- `fp16_opt_level`: O1
|
| 270 |
+
- `half_precision_backend`: auto
|
| 271 |
+
- `bf16_full_eval`: False
|
| 272 |
+
- `fp16_full_eval`: False
|
| 273 |
+
- `tf32`: None
|
| 274 |
+
- `local_rank`: 0
|
| 275 |
+
- `ddp_backend`: None
|
| 276 |
+
- `tpu_num_cores`: None
|
| 277 |
+
- `tpu_metrics_debug`: False
|
| 278 |
+
- `debug`: []
|
| 279 |
+
- `dataloader_drop_last`: False
|
| 280 |
+
- `dataloader_num_workers`: 0
|
| 281 |
+
- `dataloader_prefetch_factor`: None
|
| 282 |
+
- `past_index`: -1
|
| 283 |
+
- `disable_tqdm`: False
|
| 284 |
+
- `remove_unused_columns`: True
|
| 285 |
+
- `label_names`: None
|
| 286 |
+
- `load_best_model_at_end`: True
|
| 287 |
+
- `ignore_data_skip`: False
|
| 288 |
+
- `fsdp`: []
|
| 289 |
+
- `fsdp_min_num_params`: 0
|
| 290 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 291 |
+
- `tp_size`: 0
|
| 292 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 293 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 294 |
+
- `deepspeed`: None
|
| 295 |
+
- `label_smoothing_factor`: 0.0
|
| 296 |
+
- `optim`: adamw_torch
|
| 297 |
+
- `optim_args`: None
|
| 298 |
+
- `adafactor`: False
|
| 299 |
+
- `group_by_length`: False
|
| 300 |
+
- `length_column_name`: length
|
| 301 |
+
- `ddp_find_unused_parameters`: None
|
| 302 |
+
- `ddp_bucket_cap_mb`: None
|
| 303 |
+
- `ddp_broadcast_buffers`: False
|
| 304 |
+
- `dataloader_pin_memory`: True
|
| 305 |
+
- `dataloader_persistent_workers`: False
|
| 306 |
+
- `skip_memory_metrics`: True
|
| 307 |
+
- `use_legacy_prediction_loop`: False
|
| 308 |
+
- `push_to_hub`: False
|
| 309 |
+
- `resume_from_checkpoint`: None
|
| 310 |
+
- `hub_model_id`: None
|
| 311 |
+
- `hub_strategy`: every_save
|
| 312 |
+
- `hub_private_repo`: None
|
| 313 |
+
- `hub_always_push`: False
|
| 314 |
+
- `gradient_checkpointing`: False
|
| 315 |
+
- `gradient_checkpointing_kwargs`: None
|
| 316 |
+
- `include_inputs_for_metrics`: False
|
| 317 |
+
- `include_for_metrics`: []
|
| 318 |
+
- `eval_do_concat_batches`: True
|
| 319 |
+
- `fp16_backend`: auto
|
| 320 |
+
- `push_to_hub_model_id`: None
|
| 321 |
+
- `push_to_hub_organization`: None
|
| 322 |
+
- `mp_parameters`:
|
| 323 |
+
- `auto_find_batch_size`: False
|
| 324 |
+
- `full_determinism`: False
|
| 325 |
+
- `torchdynamo`: None
|
| 326 |
+
- `ray_scope`: last
|
| 327 |
+
- `ddp_timeout`: 1800
|
| 328 |
+
- `torch_compile`: False
|
| 329 |
+
- `torch_compile_backend`: None
|
| 330 |
+
- `torch_compile_mode`: None
|
| 331 |
+
- `dispatch_batches`: None
|
| 332 |
+
- `split_batches`: None
|
| 333 |
+
- `include_tokens_per_second`: False
|
| 334 |
+
- `include_num_input_tokens_seen`: False
|
| 335 |
+
- `neftune_noise_alpha`: None
|
| 336 |
+
- `optim_target_modules`: None
|
| 337 |
+
- `batch_eval_metrics`: False
|
| 338 |
+
- `eval_on_start`: True
|
| 339 |
+
- `use_liger_kernel`: False
|
| 340 |
+
- `eval_use_gather_object`: False
|
| 341 |
+
- `average_tokens_across_devices`: False
|
| 342 |
+
- `prompts`: None
|
| 343 |
+
- `batch_sampler`: no_duplicates
|
| 344 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 345 |
+
|
| 346 |
+
</details>
|
| 347 |
+
|
| 348 |
+
### Training Logs
|
| 349 |
+
| Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
|
| 350 |
+
|:------:|:----:|:-------------:|:---------------:|:---------------:|
|
| 351 |
+
| 0 | 0 | - | 0.1095 | 0.7843 |
|
| 352 |
+
| 0.1351 | 5 | 0.6784 | 0.0765 | 0.8123 |
|
| 353 |
+
| 0.2703 | 10 | 0.5088 | 0.0533 | 0.8303 |
|
| 354 |
+
| 0.4054 | 15 | 0.4364 | 0.0475 | 0.8339 |
|
| 355 |
+
| 0.5405 | 20 | 0.3456 | 0.0435 | 0.8345 |
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
### Framework Versions
|
| 359 |
+
- Python: 3.12.9
|
| 360 |
+
- Sentence Transformers: 3.4.1
|
| 361 |
+
- Transformers: 4.50.0
|
| 362 |
+
- PyTorch: 2.6.0+cpu
|
| 363 |
+
- Accelerate: 1.6.0
|
| 364 |
+
- Datasets: 3.5.0
|
| 365 |
+
- Tokenizers: 0.21.1
|
| 366 |
+
|
| 367 |
+
## Citation
|
| 368 |
+
|
| 369 |
+
### BibTeX
|
| 370 |
+
|
| 371 |
+
#### Sentence Transformers
|
| 372 |
+
```bibtex
|
| 373 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 374 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 375 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 376 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 377 |
+
month = "11",
|
| 378 |
+
year = "2019",
|
| 379 |
+
publisher = "Association for Computational Linguistics",
|
| 380 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 381 |
+
}
|
| 382 |
+
```
|
| 383 |
+
|
| 384 |
+
<!--
|
| 385 |
+
## Glossary
|
| 386 |
+
|
| 387 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 388 |
+
-->
|
| 389 |
+
|
| 390 |
+
<!--
|
| 391 |
+
## Model Card Authors
|
| 392 |
+
|
| 393 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 394 |
+
-->
|
| 395 |
+
|
| 396 |
+
<!--
|
| 397 |
+
## Model Card Contact
|
| 398 |
+
|
| 399 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 400 |
+
-->
|
checkpoint-20/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 1024,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 4096,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "xlm-roberta",
|
| 17 |
+
"num_attention_heads": 16,
|
| 18 |
+
"num_hidden_layers": 24,
|
| 19 |
+
"output_past": true,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.50.0",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 250002
|
| 27 |
+
}
|
checkpoint-20/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.1",
|
| 4 |
+
"transformers": "4.50.0",
|
| 5 |
+
"pytorch": "2.6.0+cpu"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
checkpoint-20/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d8db9ca7a34661a8ab59ec5df97ad40f2c4e75973337e38d6910ecf9c1a527f
|
| 3 |
+
size 2239607176
|
checkpoint-20/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
checkpoint-20/optimizer.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e9a2e5de59454cb420f37bc12a0f0c4f45d5c2ba401324295394063e96b747af
|
| 3 |
+
size 4471044921
|
checkpoint-20/rng_state.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f6f5fc60f03b02c0e0a76c701d090afac8e288367825dce0a6ff8fc8463b25ee
|
| 3 |
+
size 13990
|
checkpoint-20/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66649393eb0b497626eaceb0dc7ef324c049601175c3adb7f3d8bf15359013ec
|
| 3 |
+
size 1064
|
checkpoint-20/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
checkpoint-20/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
checkpoint-20/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
checkpoint-20/tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|
checkpoint-20/trainer_state.json
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_global_step": 20,
|
| 3 |
+
"best_metric": 0.043546345084905624,
|
| 4 |
+
"best_model_checkpoint": "models/me5-large-retraining\\checkpoint-20",
|
| 5 |
+
"epoch": 0.5405405405405406,
|
| 6 |
+
"eval_steps": 5,
|
| 7 |
+
"global_step": 20,
|
| 8 |
+
"is_hyper_param_search": false,
|
| 9 |
+
"is_local_process_zero": true,
|
| 10 |
+
"is_world_process_zero": true,
|
| 11 |
+
"log_history": [
|
| 12 |
+
{
|
| 13 |
+
"epoch": 0,
|
| 14 |
+
"eval_loss": 0.10950354486703873,
|
| 15 |
+
"eval_pearson_cosine": 0.7806081242807599,
|
| 16 |
+
"eval_runtime": 151.6579,
|
| 17 |
+
"eval_samples_per_second": 6.633,
|
| 18 |
+
"eval_spearman_cosine": 0.7843279594448466,
|
| 19 |
+
"eval_steps_per_second": 0.831,
|
| 20 |
+
"step": 0
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"epoch": 0.13513513513513514,
|
| 24 |
+
"grad_norm": 9.38223934173584,
|
| 25 |
+
"learning_rate": 1e-05,
|
| 26 |
+
"loss": 0.6784,
|
| 27 |
+
"step": 5
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.13513513513513514,
|
| 31 |
+
"eval_loss": 0.07647562772035599,
|
| 32 |
+
"eval_pearson_cosine": 0.8193313583571735,
|
| 33 |
+
"eval_runtime": 156.2929,
|
| 34 |
+
"eval_samples_per_second": 6.437,
|
| 35 |
+
"eval_spearman_cosine": 0.8122999445241028,
|
| 36 |
+
"eval_steps_per_second": 0.806,
|
| 37 |
+
"step": 5
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.2702702702702703,
|
| 41 |
+
"grad_norm": 8.665059089660645,
|
| 42 |
+
"learning_rate": 1e-05,
|
| 43 |
+
"loss": 0.5088,
|
| 44 |
+
"step": 10
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.2702702702702703,
|
| 48 |
+
"eval_loss": 0.05329965054988861,
|
| 49 |
+
"eval_pearson_cosine": 0.846437709431274,
|
| 50 |
+
"eval_runtime": 152.6705,
|
| 51 |
+
"eval_samples_per_second": 6.589,
|
| 52 |
+
"eval_spearman_cosine": 0.8303112726354404,
|
| 53 |
+
"eval_steps_per_second": 0.825,
|
| 54 |
+
"step": 10
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"epoch": 0.40540540540540543,
|
| 58 |
+
"grad_norm": 21.96602439880371,
|
| 59 |
+
"learning_rate": 1e-05,
|
| 60 |
+
"loss": 0.4364,
|
| 61 |
+
"step": 15
|
| 62 |
+
},
|
| 63 |
+
{
|
| 64 |
+
"epoch": 0.40540540540540543,
|
| 65 |
+
"eval_loss": 0.047497160732746124,
|
| 66 |
+
"eval_pearson_cosine": 0.8497791216636505,
|
| 67 |
+
"eval_runtime": 150.8647,
|
| 68 |
+
"eval_samples_per_second": 6.668,
|
| 69 |
+
"eval_spearman_cosine": 0.8338916292060913,
|
| 70 |
+
"eval_steps_per_second": 0.835,
|
| 71 |
+
"step": 15
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"epoch": 0.5405405405405406,
|
| 75 |
+
"grad_norm": 10.698002815246582,
|
| 76 |
+
"learning_rate": 1e-05,
|
| 77 |
+
"loss": 0.3456,
|
| 78 |
+
"step": 20
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"epoch": 0.5405405405405406,
|
| 82 |
+
"eval_loss": 0.043546345084905624,
|
| 83 |
+
"eval_pearson_cosine": 0.8481768671521202,
|
| 84 |
+
"eval_runtime": 151.8674,
|
| 85 |
+
"eval_samples_per_second": 6.624,
|
| 86 |
+
"eval_spearman_cosine": 0.8344803713886917,
|
| 87 |
+
"eval_steps_per_second": 0.83,
|
| 88 |
+
"step": 20
|
| 89 |
+
}
|
| 90 |
+
],
|
| 91 |
+
"logging_steps": 5,
|
| 92 |
+
"max_steps": 37,
|
| 93 |
+
"num_input_tokens_seen": 0,
|
| 94 |
+
"num_train_epochs": 1,
|
| 95 |
+
"save_steps": 10,
|
| 96 |
+
"stateful_callbacks": {
|
| 97 |
+
"TrainerControl": {
|
| 98 |
+
"args": {
|
| 99 |
+
"should_epoch_stop": false,
|
| 100 |
+
"should_evaluate": false,
|
| 101 |
+
"should_log": false,
|
| 102 |
+
"should_save": true,
|
| 103 |
+
"should_training_stop": false
|
| 104 |
+
},
|
| 105 |
+
"attributes": {}
|
| 106 |
+
}
|
| 107 |
+
},
|
| 108 |
+
"total_flos": 0.0,
|
| 109 |
+
"train_batch_size": 8,
|
| 110 |
+
"trial_name": null,
|
| 111 |
+
"trial_params": null
|
| 112 |
+
}
|
checkpoint-20/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b41c6ac4c736e654c2036409a6676535c43e7b515e2e3c97cfc2b06f8c81bf3
|
| 3 |
+
size 5624
|
eval/similarity_evaluation_results.csv
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
epoch,steps,cosine_pearson,cosine_spearman
|
| 2 |
+
0,0,0.7806081242807599,0.7843279594448466
|
| 3 |
+
0.13513513513513514,5,0.8193313583571735,0.8122999445241028
|
| 4 |
+
0.2702702702702703,10,0.846437709431274,0.8303112726354404
|
| 5 |
+
0.40540540540540543,15,0.8497791216636505,0.8338916292060913
|
| 6 |
+
0.5405405405405406,20,0.8481768671521202,0.8344803713886917
|
| 7 |
+
0.6756756756756757,25,0.8419294236114762,0.8324197823497284
|
| 8 |
+
0.8108108108108109,30,0.8311833878571917,0.8270800450821792
|
| 9 |
+
0.9459459459459459,35,0.8323883964862309,0.8261627064456549
|
| 10 |
+
1.0810810810810811,40,0.8322596480425719,0.8232463910787938
|
| 11 |
+
1.2162162162162162,45,0.8345968763719022,0.8220928743948337
|
| 12 |
+
1.3513513513513513,50,0.8295312877735412,0.8197002635410278
|
| 13 |
+
1.4864864864864864,55,0.8258612961974536,0.8190362223126076
|
| 14 |
+
1.6216216216216215,60,0.8280490163439709,0.8212679517806181
|
| 15 |
+
1.7567567567567568,65,0.8348764332747338,0.8253343633484949
|
| 16 |
+
1.8918918918918919,70,0.8327080612027193,0.8249373111883099
|
| 17 |
+
2.027027027027027,75,0.8292172905350813,0.8226234223032437
|
| 18 |
+
2.1621621621621623,80,0.8348787263877363,0.8262517044196894
|
| 19 |
+
2.2972972972972974,85,0.834739922043313,0.8269978977904043
|
| 20 |
+
2.4324324324324325,90,0.8300953895591171,0.8249920776743955
|
| 21 |
+
2.5675675675675675,95,0.8280036278693699,0.8241911129581995
|
| 22 |
+
2.7027027027027026,100,0.827662426497365,0.8241911153867979
|
| 23 |
+
2.8378378378378377,105,0.8271686930217653,0.8242595734942031
|
| 24 |
+
2.972972972972973,110,0.8242998475213165,0.8243348749833265
|
| 25 |
+
3.108108108108108,115,0.8100599157021782,0.8195085832550942
|
| 26 |
+
3.2432432432432434,120,0.8092739374985023,0.8194743493718913
|
| 27 |
+
3.3783783783783785,125,0.8212737827789367,0.8250605382131625
|
| 28 |
+
3.5135135135135136,130,0.8257663666576973,0.8261900896885362
|
| 29 |
+
3.6486486486486487,135,0.8294106767298322,0.826217475365987
|
| 30 |
+
3.7837837837837838,140,0.8333850683405307,0.8273128026466706
|
| 31 |
+
3.918918918918919,145,0.8334934833047165,0.8261353280714282
|
| 32 |
+
0,0,0.7806081242807599,0.7843279594448466
|
| 33 |
+
0.13513513513513514,5,0.8193313583571735,0.8122999445241028
|
| 34 |
+
0.2702702702702703,10,0.846437709431274,0.8303112726354404
|
| 35 |
+
0.40540540540540543,15,0.8497791216636505,0.8338916292060913
|
| 36 |
+
0.5405405405405406,20,0.8481768671521202,0.8344803713886917
|
| 37 |
+
0.6756756756756757,25,0.8419294236114762,0.8324197823497284
|
| 38 |
+
0.8108108108108109,30,0.8311833878571917,0.8270800450821792
|
| 39 |
+
0.9459459459459459,35,0.8323883964862309,0.8261627064456549
|
latest/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
latest/README.md
ADDED
|
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sentence-similarity
|
| 5 |
+
- feature-extraction
|
| 6 |
+
- generated_from_trainer
|
| 7 |
+
- dataset_size:290
|
| 8 |
+
- loss:OnlineContrastiveLoss
|
| 9 |
+
base_model: intfloat/multilingual-e5-large
|
| 10 |
+
widget:
|
| 11 |
+
- source_sentence: Antes se coge al mentiroso que al cojo
|
| 12 |
+
sentences:
|
| 13 |
+
- A escudero pobre, taza de plata y cántaro de cobre
|
| 14 |
+
- En río revuelto, pesca abundante
|
| 15 |
+
- Se ayuda primero al necesitado que al engañador.
|
| 16 |
+
- source_sentence: Asno de muchos, lobos lo comen
|
| 17 |
+
sentences:
|
| 18 |
+
- Sabio entre sabios, amigos lo respetan.
|
| 19 |
+
- El que mucho madruga más hace que el que Dios ayuda.
|
| 20 |
+
- Se pilla antes a un mentiroso que a un cojo
|
| 21 |
+
- source_sentence: Al buey por el asta, y al hombre por la palabra
|
| 22 |
+
sentences:
|
| 23 |
+
- Si no quieres arroz con leche, toma tres tazas
|
| 24 |
+
- Al hombre por la palabra, y al buey por el cuerno ata
|
| 25 |
+
- Ese no es tu amigo, sino alguien que siempre busca estar rodeado de bullicio y
|
| 26 |
+
actividad.
|
| 27 |
+
- source_sentence: Al médico, confesor y letrado, hablarles claro
|
| 28 |
+
sentences:
|
| 29 |
+
- Al médico, confesor y letrado, no le hayas engañado
|
| 30 |
+
- Más vale a quien Dios ayuda que quien mucho madruga
|
| 31 |
+
- Al que anda entre la miel, algo se le pega
|
| 32 |
+
- source_sentence: A muertos y a idos, no hay amigos
|
| 33 |
+
sentences:
|
| 34 |
+
- Al buen callar llaman santo
|
| 35 |
+
- A los vivos y presentes, siempre hay amigos.
|
| 36 |
+
- Al que de prestado se viste, en la calle lo desnudan
|
| 37 |
+
pipeline_tag: sentence-similarity
|
| 38 |
+
library_name: sentence-transformers
|
| 39 |
+
metrics:
|
| 40 |
+
- pearson_cosine
|
| 41 |
+
- spearman_cosine
|
| 42 |
+
model-index:
|
| 43 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-large
|
| 44 |
+
results:
|
| 45 |
+
- task:
|
| 46 |
+
type: semantic-similarity
|
| 47 |
+
name: Semantic Similarity
|
| 48 |
+
dataset:
|
| 49 |
+
name: Unknown
|
| 50 |
+
type: unknown
|
| 51 |
+
metrics:
|
| 52 |
+
- type: pearson_cosine
|
| 53 |
+
value: 0.8323883964862309
|
| 54 |
+
name: Pearson Cosine
|
| 55 |
+
- type: spearman_cosine
|
| 56 |
+
value: 0.8261627064456549
|
| 57 |
+
name: Spearman Cosine
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
# SentenceTransformer based on intfloat/multilingual-e5-large
|
| 61 |
+
|
| 62 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) on the csv dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 63 |
+
|
| 64 |
+
## Model Details
|
| 65 |
+
|
| 66 |
+
### Model Description
|
| 67 |
+
- **Model Type:** Sentence Transformer
|
| 68 |
+
- **Base model:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) <!-- at revision 0dc5580a448e4284468b8909bae50fa925907bc5 -->
|
| 69 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 70 |
+
- **Output Dimensionality:** 1024 dimensions
|
| 71 |
+
- **Similarity Function:** Cosine Similarity
|
| 72 |
+
- **Training Dataset:**
|
| 73 |
+
- csv
|
| 74 |
+
<!-- - **Language:** Unknown -->
|
| 75 |
+
<!-- - **License:** Unknown -->
|
| 76 |
+
|
| 77 |
+
### Model Sources
|
| 78 |
+
|
| 79 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 80 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 81 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 82 |
+
|
| 83 |
+
### Full Model Architecture
|
| 84 |
+
|
| 85 |
+
```
|
| 86 |
+
SentenceTransformer(
|
| 87 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 88 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 89 |
+
(2): Normalize()
|
| 90 |
+
)
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
## Usage
|
| 94 |
+
|
| 95 |
+
### Direct Usage (Sentence Transformers)
|
| 96 |
+
|
| 97 |
+
First install the Sentence Transformers library:
|
| 98 |
+
|
| 99 |
+
```bash
|
| 100 |
+
pip install -U sentence-transformers
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
Then you can load this model and run inference.
|
| 104 |
+
```python
|
| 105 |
+
from sentence_transformers import SentenceTransformer
|
| 106 |
+
|
| 107 |
+
# Download from the 🤗 Hub
|
| 108 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
| 109 |
+
# Run inference
|
| 110 |
+
sentences = [
|
| 111 |
+
'A muertos y a idos, no hay amigos',
|
| 112 |
+
'A los vivos y presentes, siempre hay amigos.',
|
| 113 |
+
'Al buen callar llaman santo',
|
| 114 |
+
]
|
| 115 |
+
embeddings = model.encode(sentences)
|
| 116 |
+
print(embeddings.shape)
|
| 117 |
+
# [3, 1024]
|
| 118 |
+
|
| 119 |
+
# Get the similarity scores for the embeddings
|
| 120 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 121 |
+
print(similarities.shape)
|
| 122 |
+
# [3, 3]
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Direct Usage (Transformers)
|
| 127 |
+
|
| 128 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 129 |
+
|
| 130 |
+
</details>
|
| 131 |
+
-->
|
| 132 |
+
|
| 133 |
+
<!--
|
| 134 |
+
### Downstream Usage (Sentence Transformers)
|
| 135 |
+
|
| 136 |
+
You can finetune this model on your own dataset.
|
| 137 |
+
|
| 138 |
+
<details><summary>Click to expand</summary>
|
| 139 |
+
|
| 140 |
+
</details>
|
| 141 |
+
-->
|
| 142 |
+
|
| 143 |
+
<!--
|
| 144 |
+
### Out-of-Scope Use
|
| 145 |
+
|
| 146 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 147 |
+
-->
|
| 148 |
+
|
| 149 |
+
## Evaluation
|
| 150 |
+
|
| 151 |
+
### Metrics
|
| 152 |
+
|
| 153 |
+
#### Semantic Similarity
|
| 154 |
+
|
| 155 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 156 |
+
|
| 157 |
+
| Metric | Value |
|
| 158 |
+
|:--------------------|:-----------|
|
| 159 |
+
| pearson_cosine | 0.8324 |
|
| 160 |
+
| **spearman_cosine** | **0.8262** |
|
| 161 |
+
|
| 162 |
+
<!--
|
| 163 |
+
## Bias, Risks and Limitations
|
| 164 |
+
|
| 165 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 166 |
+
-->
|
| 167 |
+
|
| 168 |
+
<!--
|
| 169 |
+
### Recommendations
|
| 170 |
+
|
| 171 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 172 |
+
-->
|
| 173 |
+
|
| 174 |
+
## Training Details
|
| 175 |
+
|
| 176 |
+
### Training Dataset
|
| 177 |
+
|
| 178 |
+
#### csv
|
| 179 |
+
|
| 180 |
+
* Dataset: csv
|
| 181 |
+
* Size: 290 training samples
|
| 182 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 183 |
+
* Approximate statistics based on the first 290 samples:
|
| 184 |
+
| | sentence1 | sentence2 | label |
|
| 185 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 186 |
+
| type | string | string | int |
|
| 187 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 11.68 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 17.01 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> |
|
| 188 |
+
* Samples:
|
| 189 |
+
| sentence1 | sentence2 | label |
|
| 190 |
+
|:------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
|
| 191 |
+
| <code>Gota a gota, la mar se agota.</code> | <code>Con el pasar del tiempo se llega a alcanzar cualquier meta.</code> | <code>1</code> |
|
| 192 |
+
| <code>Dime de qué presumes y te diré de qué careces.</code> | <code>Dime de qué careces y te diré de qué dispones.</code> | <code>0</code> |
|
| 193 |
+
| <code>Cómo se vive, se muere.</code> | <code>De aquella forma que hemos vivido nuestra vida será de la forma en la que moriremos.</code> | <code>1</code> |
|
| 194 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 195 |
+
|
| 196 |
+
### Evaluation Dataset
|
| 197 |
+
|
| 198 |
+
#### Unnamed Dataset
|
| 199 |
+
|
| 200 |
+
* Size: 1,006 evaluation samples
|
| 201 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 202 |
+
* Approximate statistics based on the first 1000 samples:
|
| 203 |
+
| | sentence1 | sentence2 | label |
|
| 204 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
|
| 205 |
+
| type | string | string | int |
|
| 206 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 12.51 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.82 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>0: ~49.70%</li><li>1: ~50.30%</li></ul> |
|
| 207 |
+
* Samples:
|
| 208 |
+
| sentence1 | sentence2 | label |
|
| 209 |
+
|:---------------------------------------------|:-----------------------------------------------------------------------|:---------------|
|
| 210 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿A dó irá el buey que no are?</code> | <code>1</code> |
|
| 211 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿Adónde irá el buey que no are ni la mula que no cargue?</code> | <code>1</code> |
|
| 212 |
+
| <code>¿Adónde irá el buey que no are?</code> | <code>¿Adónde irá el buey que no are, sino al matadero?</code> | <code>1</code> |
|
| 213 |
+
* Loss: [<code>OnlineContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
|
| 214 |
+
|
| 215 |
+
### Training Hyperparameters
|
| 216 |
+
#### Non-Default Hyperparameters
|
| 217 |
+
|
| 218 |
+
- `eval_strategy`: steps
|
| 219 |
+
- `learning_rate`: 1e-05
|
| 220 |
+
- `num_train_epochs`: 1
|
| 221 |
+
- `lr_scheduler_type`: constant
|
| 222 |
+
- `load_best_model_at_end`: True
|
| 223 |
+
- `eval_on_start`: True
|
| 224 |
+
- `batch_sampler`: no_duplicates
|
| 225 |
+
|
| 226 |
+
#### All Hyperparameters
|
| 227 |
+
<details><summary>Click to expand</summary>
|
| 228 |
+
|
| 229 |
+
- `overwrite_output_dir`: False
|
| 230 |
+
- `do_predict`: False
|
| 231 |
+
- `eval_strategy`: steps
|
| 232 |
+
- `prediction_loss_only`: True
|
| 233 |
+
- `per_device_train_batch_size`: 8
|
| 234 |
+
- `per_device_eval_batch_size`: 8
|
| 235 |
+
- `per_gpu_train_batch_size`: None
|
| 236 |
+
- `per_gpu_eval_batch_size`: None
|
| 237 |
+
- `gradient_accumulation_steps`: 1
|
| 238 |
+
- `eval_accumulation_steps`: None
|
| 239 |
+
- `torch_empty_cache_steps`: None
|
| 240 |
+
- `learning_rate`: 1e-05
|
| 241 |
+
- `weight_decay`: 0.0
|
| 242 |
+
- `adam_beta1`: 0.9
|
| 243 |
+
- `adam_beta2`: 0.999
|
| 244 |
+
- `adam_epsilon`: 1e-08
|
| 245 |
+
- `max_grad_norm`: 1.0
|
| 246 |
+
- `num_train_epochs`: 1
|
| 247 |
+
- `max_steps`: -1
|
| 248 |
+
- `lr_scheduler_type`: constant
|
| 249 |
+
- `lr_scheduler_kwargs`: {}
|
| 250 |
+
- `warmup_ratio`: 0.0
|
| 251 |
+
- `warmup_steps`: 0
|
| 252 |
+
- `log_level`: passive
|
| 253 |
+
- `log_level_replica`: warning
|
| 254 |
+
- `log_on_each_node`: True
|
| 255 |
+
- `logging_nan_inf_filter`: True
|
| 256 |
+
- `save_safetensors`: True
|
| 257 |
+
- `save_on_each_node`: False
|
| 258 |
+
- `save_only_model`: False
|
| 259 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 260 |
+
- `no_cuda`: False
|
| 261 |
+
- `use_cpu`: False
|
| 262 |
+
- `use_mps_device`: False
|
| 263 |
+
- `seed`: 42
|
| 264 |
+
- `data_seed`: None
|
| 265 |
+
- `jit_mode_eval`: False
|
| 266 |
+
- `use_ipex`: False
|
| 267 |
+
- `bf16`: False
|
| 268 |
+
- `fp16`: False
|
| 269 |
+
- `fp16_opt_level`: O1
|
| 270 |
+
- `half_precision_backend`: auto
|
| 271 |
+
- `bf16_full_eval`: False
|
| 272 |
+
- `fp16_full_eval`: False
|
| 273 |
+
- `tf32`: None
|
| 274 |
+
- `local_rank`: 0
|
| 275 |
+
- `ddp_backend`: None
|
| 276 |
+
- `tpu_num_cores`: None
|
| 277 |
+
- `tpu_metrics_debug`: False
|
| 278 |
+
- `debug`: []
|
| 279 |
+
- `dataloader_drop_last`: False
|
| 280 |
+
- `dataloader_num_workers`: 0
|
| 281 |
+
- `dataloader_prefetch_factor`: None
|
| 282 |
+
- `past_index`: -1
|
| 283 |
+
- `disable_tqdm`: False
|
| 284 |
+
- `remove_unused_columns`: True
|
| 285 |
+
- `label_names`: None
|
| 286 |
+
- `load_best_model_at_end`: True
|
| 287 |
+
- `ignore_data_skip`: False
|
| 288 |
+
- `fsdp`: []
|
| 289 |
+
- `fsdp_min_num_params`: 0
|
| 290 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 291 |
+
- `tp_size`: 0
|
| 292 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 293 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 294 |
+
- `deepspeed`: None
|
| 295 |
+
- `label_smoothing_factor`: 0.0
|
| 296 |
+
- `optim`: adamw_torch
|
| 297 |
+
- `optim_args`: None
|
| 298 |
+
- `adafactor`: False
|
| 299 |
+
- `group_by_length`: False
|
| 300 |
+
- `length_column_name`: length
|
| 301 |
+
- `ddp_find_unused_parameters`: None
|
| 302 |
+
- `ddp_bucket_cap_mb`: None
|
| 303 |
+
- `ddp_broadcast_buffers`: False
|
| 304 |
+
- `dataloader_pin_memory`: True
|
| 305 |
+
- `dataloader_persistent_workers`: False
|
| 306 |
+
- `skip_memory_metrics`: True
|
| 307 |
+
- `use_legacy_prediction_loop`: False
|
| 308 |
+
- `push_to_hub`: False
|
| 309 |
+
- `resume_from_checkpoint`: None
|
| 310 |
+
- `hub_model_id`: None
|
| 311 |
+
- `hub_strategy`: every_save
|
| 312 |
+
- `hub_private_repo`: None
|
| 313 |
+
- `hub_always_push`: False
|
| 314 |
+
- `gradient_checkpointing`: False
|
| 315 |
+
- `gradient_checkpointing_kwargs`: None
|
| 316 |
+
- `include_inputs_for_metrics`: False
|
| 317 |
+
- `include_for_metrics`: []
|
| 318 |
+
- `eval_do_concat_batches`: True
|
| 319 |
+
- `fp16_backend`: auto
|
| 320 |
+
- `push_to_hub_model_id`: None
|
| 321 |
+
- `push_to_hub_organization`: None
|
| 322 |
+
- `mp_parameters`:
|
| 323 |
+
- `auto_find_batch_size`: False
|
| 324 |
+
- `full_determinism`: False
|
| 325 |
+
- `torchdynamo`: None
|
| 326 |
+
- `ray_scope`: last
|
| 327 |
+
- `ddp_timeout`: 1800
|
| 328 |
+
- `torch_compile`: False
|
| 329 |
+
- `torch_compile_backend`: None
|
| 330 |
+
- `torch_compile_mode`: None
|
| 331 |
+
- `dispatch_batches`: None
|
| 332 |
+
- `split_batches`: None
|
| 333 |
+
- `include_tokens_per_second`: False
|
| 334 |
+
- `include_num_input_tokens_seen`: False
|
| 335 |
+
- `neftune_noise_alpha`: None
|
| 336 |
+
- `optim_target_modules`: None
|
| 337 |
+
- `batch_eval_metrics`: False
|
| 338 |
+
- `eval_on_start`: True
|
| 339 |
+
- `use_liger_kernel`: False
|
| 340 |
+
- `eval_use_gather_object`: False
|
| 341 |
+
- `average_tokens_across_devices`: False
|
| 342 |
+
- `prompts`: None
|
| 343 |
+
- `batch_sampler`: no_duplicates
|
| 344 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 345 |
+
|
| 346 |
+
</details>
|
| 347 |
+
|
| 348 |
+
### Training Logs
|
| 349 |
+
| Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
|
| 350 |
+
|:----------:|:------:|:-------------:|:---------------:|:---------------:|
|
| 351 |
+
| 0 | 0 | - | 0.1095 | 0.7843 |
|
| 352 |
+
| 0.1351 | 5 | 0.6784 | 0.0765 | 0.8123 |
|
| 353 |
+
| 0.2703 | 10 | 0.5088 | 0.0533 | 0.8303 |
|
| 354 |
+
| 0.4054 | 15 | 0.4364 | 0.0475 | 0.8339 |
|
| 355 |
+
| **0.5405** | **20** | **0.3456** | **0.0435** | **0.8345** |
|
| 356 |
+
| 0.6757 | 25 | 0.1423 | 0.0424 | 0.8324 |
|
| 357 |
+
| 0.8108 | 30 | 0.2852 | 0.0443 | 0.8271 |
|
| 358 |
+
| 0.9459 | 35 | 0.2616 | 0.0514 | 0.8262 |
|
| 359 |
+
|
| 360 |
+
* The bold row denotes the saved checkpoint.
|
| 361 |
+
|
| 362 |
+
### Framework Versions
|
| 363 |
+
- Python: 3.12.9
|
| 364 |
+
- Sentence Transformers: 3.4.1
|
| 365 |
+
- Transformers: 4.50.0
|
| 366 |
+
- PyTorch: 2.6.0+cpu
|
| 367 |
+
- Accelerate: 1.6.0
|
| 368 |
+
- Datasets: 3.5.0
|
| 369 |
+
- Tokenizers: 0.21.1
|
| 370 |
+
|
| 371 |
+
## Citation
|
| 372 |
+
|
| 373 |
+
### BibTeX
|
| 374 |
+
|
| 375 |
+
#### Sentence Transformers
|
| 376 |
+
```bibtex
|
| 377 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 378 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 379 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 380 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 381 |
+
month = "11",
|
| 382 |
+
year = "2019",
|
| 383 |
+
publisher = "Association for Computational Linguistics",
|
| 384 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 385 |
+
}
|
| 386 |
+
```
|
| 387 |
+
|
| 388 |
+
<!--
|
| 389 |
+
## Glossary
|
| 390 |
+
|
| 391 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 392 |
+
-->
|
| 393 |
+
|
| 394 |
+
<!--
|
| 395 |
+
## Model Card Authors
|
| 396 |
+
|
| 397 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 398 |
+
-->
|
| 399 |
+
|
| 400 |
+
<!--
|
| 401 |
+
## Model Card Contact
|
| 402 |
+
|
| 403 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 404 |
+
-->
|
latest/config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"XLMRobertaModel"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 1024,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 4096,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "xlm-roberta",
|
| 17 |
+
"num_attention_heads": 16,
|
| 18 |
+
"num_hidden_layers": 24,
|
| 19 |
+
"output_past": true,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"position_embedding_type": "absolute",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.50.0",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 250002
|
| 27 |
+
}
|
latest/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.4.1",
|
| 4 |
+
"transformers": "4.50.0",
|
| 5 |
+
"pytorch": "2.6.0+cpu"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "cosine"
|
| 10 |
+
}
|
latest/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d8db9ca7a34661a8ab59ec5df97ad40f2c4e75973337e38d6910ecf9c1a527f
|
| 3 |
+
size 2239607176
|
latest/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
latest/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
latest/special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
latest/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
latest/tokenizer_config.json
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"extra_special_tokens": {},
|
| 49 |
+
"mask_token": "<mask>",
|
| 50 |
+
"model_max_length": 512,
|
| 51 |
+
"pad_token": "<pad>",
|
| 52 |
+
"sep_token": "</s>",
|
| 53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 54 |
+
"unk_token": "<unk>"
|
| 55 |
+
}
|
latest/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7b41c6ac4c736e654c2036409a6676535c43e7b515e2e3c97cfc2b06f8c81bf3
|
| 3 |
+
size 5624
|