--- language: - en license: apache-2.0 tags: - object-detection - AgTech - transformers library_name: pytorch inference: false datasets: - Laudando-Associates-LLC/pucks base_model: Laudando-Associates-LLC/d-fine base_model_relation: finetune model-index: - name: D-FINE Small results: - task: type: object-detection name: Object Detection dataset: type: Laudando-Associates-LLC/pucks name: L&A Pucks Dataset config: default split: validation metrics: - type: mean_average_precision name: mAP@[IoU=0.50:0.95] value: 0.816 - type: mean_average_precision name: mAP@0.50 value: 0.983 - type: mean_average_precision name: mAP@0.75 value: 0.960 - type: recall name: AR@[IoU=0.50:0.95 | maxDets=100] value: 0.859 - type: recall name: AR@0.50 value: 0.994 - type: recall name: AR@0.75 value: 0.970 - type: f1 value: 0.951 - type: precision value: 0.975 - type: recall value: 0.928 - type: iou value: 0.819 ---

D-FINE Small

This repository contains the [D-FINE](https://arxiv.org/abs/2410.13842) Small model, a real-time object detector designed for efficient and accurate object detection tasks. ## Try it in the Browser You can test this model using our interactive Gradio demo:

## Model Overview * Architecture: D-FINE Small * Parameters: 10.3M * Performance: - mAP@[0.50:0.95]: 0.816 - mAP@[0.50]: 0.983 - AR@[0.50:0.95]: 0.859 - F1 Score: 0.951 * Framework: PyTorch / ONNX * Training Hardware: 2× NVIDIA RTX A6000 GPUs ## Download | Format | Link | |:--------:|:------:| | ONNX | | | PyTorch | | ## Usage To utilize this model, ensure you have the shared [D-FINE processor](https://huggingface.co/Laudando-Associates-LLC/d-fine): ```python from transformers import AutoProcessor, AutoModel # Load processor processor = AutoProcessor.from_pretrained("Laudando-Associates-LLC/d-fine", trust_remote_code=True) # Load model model = AutoModel.from_pretrained("Laudando-Associates-LLC/d-fine-small", trust_remote_code=True) # Process image inputs = processor(image) # Run inference outputs = model(**inputs, conf_threshold=0.4) ``` ## Evaluation This model was trained and evaluated on the [L&A Pucks Dataset](https://huggingface.co/datasets/Laudando-Associates-LLC/pucks). ## License This model is licensed under the [Apache License 2.0](https://github.com/Peterande/D-FINE/blob/master/LICENSE). ## Citation If you use `D-FINE` or its methods in your work, please cite the following BibTeX entries: ```latex @misc{peng2024dfine, title={D-FINE: Redefine Regression Task in DETRs as Fine-grained Distribution Refinement}, author={Yansong Peng and Hebei Li and Peixi Wu and Yueyi Zhang and Xiaoyan Sun and Feng Wu}, year={2024}, eprint={2410.13842}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```