|
|
import os
|
|
|
import cv2
|
|
|
import numpy as np
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.optim as optim
|
|
|
from torch.utils.data import Dataset, DataLoader
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
|
|
|
import torchvision.models.video as models
|
|
|
import time
|
|
|
from model import FeatureFusionNetwork
|
|
|
|
|
|
|
|
|
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
|
|
DATASET_DIR = os.path.join(BASE_DIR, "Dataset")
|
|
|
MODEL_SAVE_PATH = "best_model_fusion.pth"
|
|
|
|
|
|
IMG_SIZE = 112
|
|
|
SEQ_LEN = 16
|
|
|
BATCH_SIZE = 16
|
|
|
EPOCHS = 80
|
|
|
LEARNING_RATE = 1e-4
|
|
|
PATIENCE = 5
|
|
|
|
|
|
|
|
|
class StandardDataset(Dataset):
|
|
|
def __init__(self, video_paths, labels):
|
|
|
self.video_paths = video_paths
|
|
|
self.labels = labels
|
|
|
|
|
|
def __len__(self):
|
|
|
return len(self.video_paths)
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
path = self.video_paths[idx]
|
|
|
label = self.labels[idx]
|
|
|
|
|
|
cap = cv2.VideoCapture(path)
|
|
|
frames = []
|
|
|
try:
|
|
|
while True:
|
|
|
ret, frame = cap.read()
|
|
|
if not ret: break
|
|
|
frame = cv2.resize(frame, (IMG_SIZE, IMG_SIZE))
|
|
|
frames.append(frame)
|
|
|
finally:
|
|
|
cap.release()
|
|
|
|
|
|
if len(frames) == 0:
|
|
|
frames = np.zeros((SEQ_LEN, IMG_SIZE, IMG_SIZE, 3), dtype=np.float32)
|
|
|
elif len(frames) < SEQ_LEN:
|
|
|
while len(frames) < SEQ_LEN: frames.append(frames[-1])
|
|
|
elif len(frames) > SEQ_LEN:
|
|
|
indices = np.linspace(0, len(frames)-1, SEQ_LEN, dtype=int)
|
|
|
frames = [frames[i] for i in indices]
|
|
|
|
|
|
frames = np.array(frames, dtype=np.float32) / 255.0
|
|
|
|
|
|
frames = torch.tensor(frames).permute(3, 0, 1, 2)
|
|
|
return frames, label
|
|
|
|
|
|
|
|
|
def prepare_data():
|
|
|
violence_dir = os.path.join(DATASET_DIR, 'violence')
|
|
|
no_violence_dir = os.path.join(DATASET_DIR, 'no-violence')
|
|
|
|
|
|
if not os.path.exists(violence_dir) or not os.path.exists(no_violence_dir):
|
|
|
raise FileNotFoundError("Dataset directories not found.")
|
|
|
|
|
|
violence_files = [os.path.join(violence_dir, f) for f in os.listdir(violence_dir) if f.endswith('.avi') or f.endswith('.mp4')]
|
|
|
no_violence_files = [os.path.join(no_violence_dir, f) for f in os.listdir(no_violence_dir) if f.endswith('.avi') or f.endswith('.mp4')]
|
|
|
|
|
|
X = violence_files + no_violence_files
|
|
|
y = [1] * len(violence_files) + [0] * len(no_violence_files)
|
|
|
|
|
|
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.30, random_state=42, stratify=y)
|
|
|
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.50, random_state=42, stratify=y_temp)
|
|
|
|
|
|
return (X_train, y_train), (X_val, y_val), (X_test, y_test)
|
|
|
|
|
|
|
|
|
class EarlyStopping:
|
|
|
def __init__(self, patience=5, verbose=False, path='checkpoint.pth'):
|
|
|
self.patience = patience
|
|
|
self.verbose = verbose
|
|
|
self.counter = 0
|
|
|
self.best_score = None
|
|
|
self.early_stop = False
|
|
|
self.val_loss_min = np.inf
|
|
|
self.path = path
|
|
|
|
|
|
def __call__(self, val_loss, model):
|
|
|
score = -val_loss
|
|
|
if self.best_score is None:
|
|
|
self.best_score = score
|
|
|
self.save_checkpoint(val_loss, model)
|
|
|
elif score < self.best_score:
|
|
|
self.counter += 1
|
|
|
if self.verbose:
|
|
|
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
|
|
if self.counter >= self.patience:
|
|
|
self.early_stop = True
|
|
|
else:
|
|
|
self.best_score = score
|
|
|
self.save_checkpoint(val_loss, model)
|
|
|
self.counter = 0
|
|
|
|
|
|
def save_checkpoint(self, val_loss, model):
|
|
|
if self.verbose:
|
|
|
print(f'Validation loss decreased ({self.val_loss_min:.6f} --> {val_loss:.6f}). Saving model ...')
|
|
|
torch.save(model, self.path)
|
|
|
self.val_loss_min = val_loss
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
start_time = time.time()
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
print(f"Using device: {device}")
|
|
|
|
|
|
try:
|
|
|
(X_train, y_train), (X_val, y_val), (X_test, y_test) = prepare_data()
|
|
|
print(f"Dataset Split Stats:")
|
|
|
print(f"Train: {len(X_train)} samples")
|
|
|
print(f"Val: {len(X_val)} samples")
|
|
|
print(f"Test: {len(X_test)} samples")
|
|
|
except Exception as e:
|
|
|
print(f"Data preparation failed: {e}")
|
|
|
exit(1)
|
|
|
|
|
|
train_dataset = StandardDataset(X_train, y_train)
|
|
|
val_dataset = StandardDataset(X_val, y_val)
|
|
|
test_dataset = StandardDataset(X_test, y_test)
|
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
|
|
|
val_loader = DataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
|
|
|
test_loader = DataLoader(test_dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=0)
|
|
|
|
|
|
model = FeatureFusionNetwork().to(device)
|
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
|
|
|
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=2)
|
|
|
|
|
|
early_stopping = EarlyStopping(patience=PATIENCE, verbose=True, path=MODEL_SAVE_PATH)
|
|
|
|
|
|
print("\nStarting Feature Fusion Training...")
|
|
|
|
|
|
for epoch in range(EPOCHS):
|
|
|
model.train()
|
|
|
train_loss = 0.0
|
|
|
correct = 0
|
|
|
total = 0
|
|
|
|
|
|
for batch_idx, (inputs, labels) in enumerate(train_loader):
|
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
outputs = model(inputs)
|
|
|
loss = criterion(outputs, labels)
|
|
|
loss.backward()
|
|
|
optimizer.step()
|
|
|
|
|
|
train_loss += loss.item()
|
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
|
total += labels.size(0)
|
|
|
correct += (predicted == labels).sum().item()
|
|
|
|
|
|
if batch_idx % 10 == 0:
|
|
|
print(f"Epoch {epoch+1} Batch {batch_idx}/{len(train_loader)} Loss: {loss.item():.4f}", end='\r')
|
|
|
|
|
|
train_acc = 100 * correct / total
|
|
|
avg_train_loss = train_loss / len(train_loader)
|
|
|
|
|
|
model.eval()
|
|
|
val_loss = 0.0
|
|
|
correct_val = 0
|
|
|
total_val = 0
|
|
|
|
|
|
with torch.no_grad():
|
|
|
for inputs, labels in val_loader:
|
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
outputs = model(inputs)
|
|
|
loss = criterion(outputs, labels)
|
|
|
val_loss += loss.item()
|
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
|
total_val += labels.size(0)
|
|
|
correct_val += (predicted == labels).sum().item()
|
|
|
|
|
|
val_acc = 100 * correct_val / total_val
|
|
|
avg_val_loss = val_loss / len(val_loader)
|
|
|
|
|
|
print(f'\nEpoch [{epoch+1}/{EPOCHS}] '
|
|
|
f'Train Loss: {avg_train_loss:.4f} Acc: {train_acc:.2f}% '
|
|
|
f'Val Loss: {avg_val_loss:.4f} Acc: {val_acc:.2f}%')
|
|
|
|
|
|
scheduler.step(avg_val_loss)
|
|
|
|
|
|
early_stopping(avg_val_loss, model)
|
|
|
if early_stopping.early_stop:
|
|
|
print("Early stopping triggered")
|
|
|
break
|
|
|
|
|
|
print("\nLoading best Fusion model for evaluation...")
|
|
|
if os.path.exists(MODEL_SAVE_PATH):
|
|
|
model = torch.load(MODEL_SAVE_PATH)
|
|
|
else:
|
|
|
print("Warning: Model file not found.")
|
|
|
|
|
|
model.eval()
|
|
|
all_preds = []
|
|
|
all_labels = []
|
|
|
|
|
|
print("Evaluating on Test set...")
|
|
|
with torch.no_grad():
|
|
|
for inputs, labels in test_loader:
|
|
|
inputs, labels = inputs.to(device), labels.to(device)
|
|
|
outputs = model(inputs)
|
|
|
_, predicted = torch.max(outputs.data, 1)
|
|
|
all_preds.extend(predicted.cpu().numpy())
|
|
|
all_labels.extend(labels.cpu().numpy())
|
|
|
|
|
|
print("\n=== Feature Fusion Model Evaluation Report ===")
|
|
|
print(classification_report(all_labels, all_preds, target_names=['No Violence', 'Violence']))
|
|
|
print("Confusion Matrix:")
|
|
|
print(confusion_matrix(all_labels, all_preds))
|
|
|
acc = accuracy_score(all_labels, all_preds)
|
|
|
print(f"\nFinal Test Accuracy: {acc*100:.2f}%")
|
|
|
|
|
|
elapsed = time.time() - start_time
|
|
|
print(f"\nTotal execution time: {elapsed/60:.2f} minutes")
|
|
|
|