Commit
·
adadeec
1
Parent(s):
955fb15
initial release
Browse files- README.md +29 -0
- config.json +0 -0
- maker.py +62 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +322 -0
- ud.py +81 -0
README.md
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- "uk"
|
| 4 |
+
tags:
|
| 5 |
+
- "ukrainian"
|
| 6 |
+
- "token-classification"
|
| 7 |
+
- "pos"
|
| 8 |
+
- "dependency-parsing"
|
| 9 |
+
base_model: KoichiYasuoka/modernbert-base-ukrainian
|
| 10 |
+
datasets:
|
| 11 |
+
- "universal_dependencies"
|
| 12 |
+
license: "cc-by-4.0"
|
| 13 |
+
pipeline_tag: "token-classification"
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# modernbert-base-ukrainian-ud-goeswith
|
| 17 |
+
|
| 18 |
+
## Model Description
|
| 19 |
+
|
| 20 |
+
This is a ModernBERT model for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [modernbert-base-ukrainian](https://huggingface.co/KoichiYasuoka/modernbert-base-ukrainian).
|
| 21 |
+
|
| 22 |
+
## How to Use
|
| 23 |
+
|
| 24 |
+
```py
|
| 25 |
+
from transformers import pipeline
|
| 26 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/modernbert-base-ukrainian-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
|
| 27 |
+
print(nlp("Біжать алеї звуків, саджених у гами."))
|
| 28 |
+
```
|
| 29 |
+
|
config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
maker.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#! /usr/bin/python3
|
| 2 |
+
src="KoichiYasuoka/modernbert-base-ukrainian"
|
| 3 |
+
tgt="KoichiYasuoka/modernbert-base-ukrainian-ud-goeswith"
|
| 4 |
+
url="https://github.com/UniversalDependencies/UD_Ukrainian-"
|
| 5 |
+
import os
|
| 6 |
+
for e in ["IU","ParlaMint"]:
|
| 7 |
+
u=url+e
|
| 8 |
+
d=os.path.basename(u)
|
| 9 |
+
os.system("test -d "+d+" || git clone --depth=1 "+u)
|
| 10 |
+
os.system("for F in train dev test ; do cat UD_Ukrainian-*/*-$F.conllu > $F.conllu ; done")
|
| 11 |
+
class UDgoeswithDataset(object):
|
| 12 |
+
def __init__(self,conllu,tokenizer):
|
| 13 |
+
self.ids,self.tags,label=[],[],set()
|
| 14 |
+
with open(conllu,"r",encoding="utf-8") as r:
|
| 15 |
+
cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id
|
| 16 |
+
dep,c,m="-|_|dep",[],False
|
| 17 |
+
for s in r:
|
| 18 |
+
t=s.split("\t")
|
| 19 |
+
if len(t)==10:
|
| 20 |
+
if t[0].isdecimal():
|
| 21 |
+
i=int(t[0])
|
| 22 |
+
if m:
|
| 23 |
+
t[1]=" "+t[1]
|
| 24 |
+
c.append(t)
|
| 25 |
+
m=t[9].find("SpaceAfter=No")<0
|
| 26 |
+
elif c!=[]:
|
| 27 |
+
v=tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
| 28 |
+
for i in range(len(v)-1,-1,-1):
|
| 29 |
+
for j in range(1,len(v[i])):
|
| 30 |
+
c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"])
|
| 31 |
+
y=["0"]+[t[0] for t in c]
|
| 32 |
+
h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)]
|
| 33 |
+
p,v=[t[3]+"|"+t[5]+"|"+t[7] for t in c],sum(v,[])
|
| 34 |
+
if len(v)<tokenizer.model_max_length-3:
|
| 35 |
+
self.ids.append([cls]+v+[sep])
|
| 36 |
+
self.tags.append([dep]+p+[dep])
|
| 37 |
+
label=set(sum([self.tags[-1],list(label)],[]))
|
| 38 |
+
for i,k in enumerate(v):
|
| 39 |
+
self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k])
|
| 40 |
+
self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep])
|
| 41 |
+
c,m=[],False
|
| 42 |
+
self.label2id={l:i for i,l in enumerate(sorted(label))}
|
| 43 |
+
def __call__(*args):
|
| 44 |
+
label=set(sum([list(t.label2id) for t in args],[]))
|
| 45 |
+
lid={l:i for i,l in enumerate(sorted(label))}
|
| 46 |
+
for t in args:
|
| 47 |
+
t.label2id=lid
|
| 48 |
+
return lid
|
| 49 |
+
__len__=lambda self:len(self.ids)
|
| 50 |
+
__getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]}
|
| 51 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
| 52 |
+
tkz=AutoTokenizer.from_pretrained(src,add_prefix_space=False)
|
| 53 |
+
trainDS=UDgoeswithDataset("train.conllu",tkz)
|
| 54 |
+
devDS=UDgoeswithDataset("dev.conllu",tkz)
|
| 55 |
+
testDS=UDgoeswithDataset("test.conllu",tkz)
|
| 56 |
+
lid=trainDS(devDS,testDS)
|
| 57 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
|
| 58 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=16,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,eval_strategy="epoch",learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
| 59 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS,eval_dataset=devDS)
|
| 60 |
+
trn.train()
|
| 61 |
+
trn.save_model(tgt)
|
| 62 |
+
tkz.save_pretrained(tgt)
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6bf7f5c3a9e3d8e619140d0a0d379bbc07e49944b1fd1509067328faf6f45971
|
| 3 |
+
size 657838578
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<cls>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<cls>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "<sep>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": true,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "<sep>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c9699b255aa5ddd6575f1f3834454778153ebb60f957ac139d7b1685865e5e7
|
| 3 |
+
size 2404944
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": true,
|
| 4 |
+
"add_prefix_space": false,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<pad>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<unk>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "<cls>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"3": {
|
| 31 |
+
"content": "<sep>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"4": {
|
| 39 |
+
"content": "<mask>",
|
| 40 |
+
"lstrip": true,
|
| 41 |
+
"normalized": true,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"5": {
|
| 47 |
+
"content": "!",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": false
|
| 53 |
+
},
|
| 54 |
+
"6": {
|
| 55 |
+
"content": "\"",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": false
|
| 61 |
+
},
|
| 62 |
+
"7": {
|
| 63 |
+
"content": "#",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": false
|
| 69 |
+
},
|
| 70 |
+
"8": {
|
| 71 |
+
"content": "$",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": false
|
| 77 |
+
},
|
| 78 |
+
"9": {
|
| 79 |
+
"content": "%",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": false
|
| 85 |
+
},
|
| 86 |
+
"10": {
|
| 87 |
+
"content": "&",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": false
|
| 93 |
+
},
|
| 94 |
+
"11": {
|
| 95 |
+
"content": "'",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": false
|
| 101 |
+
},
|
| 102 |
+
"12": {
|
| 103 |
+
"content": "(",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": false
|
| 109 |
+
},
|
| 110 |
+
"13": {
|
| 111 |
+
"content": ")",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": false
|
| 117 |
+
},
|
| 118 |
+
"14": {
|
| 119 |
+
"content": "*",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": false
|
| 125 |
+
},
|
| 126 |
+
"15": {
|
| 127 |
+
"content": "+",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": false
|
| 133 |
+
},
|
| 134 |
+
"16": {
|
| 135 |
+
"content": ",",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": false
|
| 141 |
+
},
|
| 142 |
+
"17": {
|
| 143 |
+
"content": "-",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": false
|
| 149 |
+
},
|
| 150 |
+
"18": {
|
| 151 |
+
"content": ".",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": false
|
| 157 |
+
},
|
| 158 |
+
"19": {
|
| 159 |
+
"content": "/",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": false
|
| 165 |
+
},
|
| 166 |
+
"20": {
|
| 167 |
+
"content": ":",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": false
|
| 173 |
+
},
|
| 174 |
+
"21": {
|
| 175 |
+
"content": ";",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": false
|
| 181 |
+
},
|
| 182 |
+
"22": {
|
| 183 |
+
"content": "<",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": false
|
| 189 |
+
},
|
| 190 |
+
"23": {
|
| 191 |
+
"content": "=",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": false
|
| 197 |
+
},
|
| 198 |
+
"24": {
|
| 199 |
+
"content": ">",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": false
|
| 205 |
+
},
|
| 206 |
+
"25": {
|
| 207 |
+
"content": "?",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": false
|
| 213 |
+
},
|
| 214 |
+
"26": {
|
| 215 |
+
"content": "@",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": false,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": false
|
| 221 |
+
},
|
| 222 |
+
"27": {
|
| 223 |
+
"content": "[",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": false
|
| 229 |
+
},
|
| 230 |
+
"28": {
|
| 231 |
+
"content": "\\",
|
| 232 |
+
"lstrip": false,
|
| 233 |
+
"normalized": false,
|
| 234 |
+
"rstrip": false,
|
| 235 |
+
"single_word": false,
|
| 236 |
+
"special": false
|
| 237 |
+
},
|
| 238 |
+
"29": {
|
| 239 |
+
"content": "]",
|
| 240 |
+
"lstrip": false,
|
| 241 |
+
"normalized": false,
|
| 242 |
+
"rstrip": false,
|
| 243 |
+
"single_word": false,
|
| 244 |
+
"special": false
|
| 245 |
+
},
|
| 246 |
+
"30": {
|
| 247 |
+
"content": "^",
|
| 248 |
+
"lstrip": false,
|
| 249 |
+
"normalized": false,
|
| 250 |
+
"rstrip": false,
|
| 251 |
+
"single_word": false,
|
| 252 |
+
"special": false
|
| 253 |
+
},
|
| 254 |
+
"31": {
|
| 255 |
+
"content": "_",
|
| 256 |
+
"lstrip": false,
|
| 257 |
+
"normalized": false,
|
| 258 |
+
"rstrip": false,
|
| 259 |
+
"single_word": false,
|
| 260 |
+
"special": false
|
| 261 |
+
},
|
| 262 |
+
"32": {
|
| 263 |
+
"content": "`",
|
| 264 |
+
"lstrip": false,
|
| 265 |
+
"normalized": false,
|
| 266 |
+
"rstrip": false,
|
| 267 |
+
"single_word": false,
|
| 268 |
+
"special": false
|
| 269 |
+
},
|
| 270 |
+
"33": {
|
| 271 |
+
"content": "{",
|
| 272 |
+
"lstrip": false,
|
| 273 |
+
"normalized": false,
|
| 274 |
+
"rstrip": false,
|
| 275 |
+
"single_word": false,
|
| 276 |
+
"special": false
|
| 277 |
+
},
|
| 278 |
+
"34": {
|
| 279 |
+
"content": "|",
|
| 280 |
+
"lstrip": false,
|
| 281 |
+
"normalized": false,
|
| 282 |
+
"rstrip": false,
|
| 283 |
+
"single_word": false,
|
| 284 |
+
"special": false
|
| 285 |
+
},
|
| 286 |
+
"35": {
|
| 287 |
+
"content": "}",
|
| 288 |
+
"lstrip": false,
|
| 289 |
+
"normalized": false,
|
| 290 |
+
"rstrip": false,
|
| 291 |
+
"single_word": false,
|
| 292 |
+
"special": false
|
| 293 |
+
},
|
| 294 |
+
"36": {
|
| 295 |
+
"content": "~",
|
| 296 |
+
"lstrip": false,
|
| 297 |
+
"normalized": false,
|
| 298 |
+
"rstrip": false,
|
| 299 |
+
"single_word": false,
|
| 300 |
+
"special": false
|
| 301 |
+
}
|
| 302 |
+
},
|
| 303 |
+
"bos_token": "<cls>",
|
| 304 |
+
"clean_up_tokenization_spaces": false,
|
| 305 |
+
"cls_token": "<cls>",
|
| 306 |
+
"eos_token": "<sep>",
|
| 307 |
+
"extra_special_tokens": {},
|
| 308 |
+
"legacy": true,
|
| 309 |
+
"mask_token": "<mask>",
|
| 310 |
+
"model_input_names": [
|
| 311 |
+
"input_ids",
|
| 312 |
+
"attention_mask"
|
| 313 |
+
],
|
| 314 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 315 |
+
"pad_token": "<pad>",
|
| 316 |
+
"sep_token": "<sep>",
|
| 317 |
+
"sp_model_kwargs": {},
|
| 318 |
+
"spaces_between_special_tokens": false,
|
| 319 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 320 |
+
"unk_token": "<unk>",
|
| 321 |
+
"use_default_system_prompt": false
|
| 322 |
+
}
|
ud.py
ADDED
|
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy
|
| 2 |
+
from transformers import TokenClassificationPipeline
|
| 3 |
+
|
| 4 |
+
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
| 5 |
+
def _forward(self,model_inputs):
|
| 6 |
+
import torch
|
| 7 |
+
v=model_inputs["input_ids"][0].tolist()
|
| 8 |
+
with torch.no_grad():
|
| 9 |
+
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
|
| 10 |
+
return {"logits":e.logits[:,1:-2,:],**model_inputs}
|
| 11 |
+
def check_model_type(self,supported_models):
|
| 12 |
+
pass
|
| 13 |
+
def postprocess(self,model_outputs,**kwargs):
|
| 14 |
+
if "logits" not in model_outputs:
|
| 15 |
+
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
|
| 16 |
+
e=model_outputs["logits"].numpy()
|
| 17 |
+
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
| 18 |
+
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
|
| 19 |
+
g=self.model.config.label2id["X|_|goeswith"]
|
| 20 |
+
r=numpy.tri(e.shape[0])
|
| 21 |
+
for i in range(e.shape[0]):
|
| 22 |
+
for j in range(i+2,e.shape[1]):
|
| 23 |
+
r[i,j]=r[i,j-1] if numpy.argmax(e[i,j-1])==g else 1
|
| 24 |
+
e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
|
| 25 |
+
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
|
| 26 |
+
h=self.chu_liu_edmonds(m)
|
| 27 |
+
z=[i for i,j in enumerate(h) if i==j]
|
| 28 |
+
if len(z)>1:
|
| 29 |
+
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
|
| 30 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
| 31 |
+
h=self.chu_liu_edmonds(m)
|
| 32 |
+
v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
|
| 33 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
| 34 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
| 35 |
+
for i,j in reversed(list(enumerate(q[1:],1))):
|
| 36 |
+
if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
|
| 37 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
| 38 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
| 39 |
+
q.pop(i)
|
| 40 |
+
elif v[i-1][1]>v[i][0]:
|
| 41 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
| 42 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
| 43 |
+
q.pop(i)
|
| 44 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
| 45 |
+
for i,(s,e) in reversed(list(enumerate(v))):
|
| 46 |
+
w=t[s:e]
|
| 47 |
+
if w.startswith(" "):
|
| 48 |
+
j=len(w)-len(w.lstrip())
|
| 49 |
+
w=w.lstrip()
|
| 50 |
+
v[i]=(v[i][0]+j,v[i][1])
|
| 51 |
+
if w.endswith(" "):
|
| 52 |
+
j=len(w)-len(w.rstrip())
|
| 53 |
+
w=w.rstrip()
|
| 54 |
+
v[i]=(v[i][0],v[i][1]-j)
|
| 55 |
+
if w.strip()=="":
|
| 56 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
| 57 |
+
v.pop(i)
|
| 58 |
+
q.pop(i)
|
| 59 |
+
u="# text = "+t+"\n"
|
| 60 |
+
for i,(s,e) in enumerate(v):
|
| 61 |
+
u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
|
| 62 |
+
return u+"\n"
|
| 63 |
+
def chu_liu_edmonds(self,matrix):
|
| 64 |
+
h=numpy.argmax(matrix,axis=0)
|
| 65 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
| 66 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
| 67 |
+
y=[]
|
| 68 |
+
while x!=y:
|
| 69 |
+
y=list(x)
|
| 70 |
+
for i,j in enumerate(x):
|
| 71 |
+
x[i]=b(x,i,j)
|
| 72 |
+
if max(x)<0:
|
| 73 |
+
return h
|
| 74 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
| 75 |
+
z=matrix-numpy.max(matrix,axis=0)
|
| 76 |
+
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
|
| 77 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
| 78 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
| 79 |
+
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
| 80 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
| 81 |
+
return h
|