Kar1hik commited on
Commit
36eb023
·
verified ·
1 Parent(s): f86bbf3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -1
README.md CHANGED
@@ -10,4 +10,51 @@ metrics:
10
  - accuracy
11
  widget:
12
  - src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - accuracy
11
  widget:
12
  - src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png
13
+ ---
14
+
15
+ # Skin Disease Classification using DINOv2 (ISIC2018)
16
+
17
+ This model classifies images of skin lesions into one of the predefined categories from the ISIC2018 dataset. It is fine-tuned on top of the `facebook/dinov2-base` Vision Transformer backbone for improved performance in medical image classification tasks.
18
+
19
+ ---
20
+
21
+ ## Model Details
22
+
23
+ - **Developed by:** Karl1hik
24
+ - **Finetuned from model:** [`facebook/dinov2-base`](https://huggingface.co/facebook/dinov2-base)
25
+ - **Dataset used:** [`ISIC2018`](https://huggingface.co/datasets/surajbijjahalli/ISIC2018)
26
+ - **Task:** Image classification (skin lesion diagnosis)
27
+ - **License:** Apache 2.0
28
+
29
+ ---
30
+
31
+ ## Uses
32
+
33
+ ### Direct Use
34
+ This model can be used directly for classifying dermatoscopic images from the ISIC2018 dataset into one of the skin disease categories such as melanoma, nevus, basal cell carcinoma, etc.
35
+
36
+ ### Intended Users
37
+ - Medical researchers
38
+ - Dermatology assistants
39
+ - ML practitioners working on medical imaging
40
+
41
+ ### Out-of-Scope Use
42
+ This model should not be used as a standalone diagnostic tool. Clinical decisions should not rely solely on model predictions.
43
+
44
+ ---
45
+
46
+ ## How to Use
47
+
48
+ ```python
49
+ from transformers import AutoImageProcessor, AutoModelForImageClassification
50
+ from PIL import Image
51
+ import torch
52
+
53
+ image = Image.open("your_skin_image.jpg")
54
+ processor = AutoImageProcessor.from_pretrained("kar1hik/computer-vision-project")
55
+ model = AutoModelForImageClassification.from_pretrained("kar1hik/computer-vision-project")
56
+
57
+ inputs = processor(images=image, return_tensors="pt")
58
+ with torch.no_grad():
59
+ logits = model(**inputs).logits
60
+ predicted_class = logits.argmax(-1).item()