Update README.md
Browse files
README.md
CHANGED
|
@@ -10,4 +10,51 @@ metrics:
|
|
| 10 |
- accuracy
|
| 11 |
widget:
|
| 12 |
- src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png
|
| 13 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
- accuracy
|
| 11 |
widget:
|
| 12 |
- src: https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/cats.png
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# Skin Disease Classification using DINOv2 (ISIC2018)
|
| 16 |
+
|
| 17 |
+
This model classifies images of skin lesions into one of the predefined categories from the ISIC2018 dataset. It is fine-tuned on top of the `facebook/dinov2-base` Vision Transformer backbone for improved performance in medical image classification tasks.
|
| 18 |
+
|
| 19 |
+
---
|
| 20 |
+
|
| 21 |
+
## Model Details
|
| 22 |
+
|
| 23 |
+
- **Developed by:** Karl1hik
|
| 24 |
+
- **Finetuned from model:** [`facebook/dinov2-base`](https://huggingface.co/facebook/dinov2-base)
|
| 25 |
+
- **Dataset used:** [`ISIC2018`](https://huggingface.co/datasets/surajbijjahalli/ISIC2018)
|
| 26 |
+
- **Task:** Image classification (skin lesion diagnosis)
|
| 27 |
+
- **License:** Apache 2.0
|
| 28 |
+
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
## Uses
|
| 32 |
+
|
| 33 |
+
### Direct Use
|
| 34 |
+
This model can be used directly for classifying dermatoscopic images from the ISIC2018 dataset into one of the skin disease categories such as melanoma, nevus, basal cell carcinoma, etc.
|
| 35 |
+
|
| 36 |
+
### Intended Users
|
| 37 |
+
- Medical researchers
|
| 38 |
+
- Dermatology assistants
|
| 39 |
+
- ML practitioners working on medical imaging
|
| 40 |
+
|
| 41 |
+
### Out-of-Scope Use
|
| 42 |
+
This model should not be used as a standalone diagnostic tool. Clinical decisions should not rely solely on model predictions.
|
| 43 |
+
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
## How to Use
|
| 47 |
+
|
| 48 |
+
```python
|
| 49 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
| 50 |
+
from PIL import Image
|
| 51 |
+
import torch
|
| 52 |
+
|
| 53 |
+
image = Image.open("your_skin_image.jpg")
|
| 54 |
+
processor = AutoImageProcessor.from_pretrained("kar1hik/computer-vision-project")
|
| 55 |
+
model = AutoModelForImageClassification.from_pretrained("kar1hik/computer-vision-project")
|
| 56 |
+
|
| 57 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 58 |
+
with torch.no_grad():
|
| 59 |
+
logits = model(**inputs).logits
|
| 60 |
+
predicted_class = logits.argmax(-1).item()
|