|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch Qwen2-VL model."""
|
|
|
|
|
|
import math
|
|
|
from dataclasses import dataclass
|
|
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
|
|
|
|
|
from torch import Tensor
|
|
|
|
|
|
import torch
|
|
|
import torch.nn as nn
|
|
|
import torch.nn.functional as F
|
|
|
import torch.utils.checkpoint
|
|
|
|
|
|
from transformers.activations import ACT2FN
|
|
|
from transformers.cache_utils import Cache, StaticCache
|
|
|
from transformers.modeling_attn_mask_utils import (
|
|
|
AttentionMaskConverter,
|
|
|
)
|
|
|
from transformers.modeling_outputs import (
|
|
|
BaseModelOutputWithPast,
|
|
|
ModelOutput,
|
|
|
)
|
|
|
from transformers.modeling_utils import PreTrainedModel
|
|
|
from transformers.utils import (
|
|
|
add_start_docstrings,
|
|
|
add_start_docstrings_to_model_forward,
|
|
|
is_torch_npu_available,
|
|
|
is_flash_attn_2_available,
|
|
|
is_flash_attn_greater_or_equal_2_10,
|
|
|
logging,
|
|
|
replace_return_docstrings,
|
|
|
)
|
|
|
from .configuration_qwen2vit import Qwen2VLConfig, Qwen2VLVisionConfig
|
|
|
from .modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
|
|
|
|
|
from einops import rearrange
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
_CONFIG_FOR_DOC = "Qwen2VLConfig"
|
|
|
|
|
|
try:
|
|
|
import xformers.ops as xops
|
|
|
|
|
|
is_xformers_available = True
|
|
|
except Exception as e:
|
|
|
is_xformers_available = False
|
|
|
|
|
|
if is_flash_attn_2_available():
|
|
|
from flash_attn import flash_attn_varlen_func
|
|
|
|
|
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
|
|
else:
|
|
|
flash_attn_varlen_func = None
|
|
|
|
|
|
|
|
|
def init_weights(m):
|
|
|
if isinstance(m, nn.Linear):
|
|
|
|
|
|
torch.nn.init.xavier_uniform_(m.weight)
|
|
|
if m.bias is not None:
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
elif isinstance(m, nn.nn.LayerNorm):
|
|
|
nn.init.constant_(m.bias, 0)
|
|
|
nn.init.constant_(m.weight, 1.0)
|
|
|
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
|
|
|
w = m.weight.data
|
|
|
torch.nn.init.xavier_uniform_(w.view([w.shape[0], -1]))
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
class Qwen2VLCausalLMOutputWithPast(ModelOutput):
|
|
|
"""
|
|
|
Base class for Qwen2VL causal language model (or autoregressive) outputs.
|
|
|
|
|
|
Args:
|
|
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
|
Language modeling loss (for next-token prediction).
|
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
|
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
|
|
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
|
`past_key_values` input) to speed up sequential decoding.
|
|
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
|
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
|
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
|
|
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
|
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
|
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
|
|
sequence_length)`.
|
|
|
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
|
|
heads.
|
|
|
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
|
The rope index difference between sequence length and multimodal rope.
|
|
|
"""
|
|
|
|
|
|
loss: Optional[torch.FloatTensor] = None
|
|
|
logits: torch.FloatTensor = None
|
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None
|
|
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
|
|
rope_deltas: Optional[torch.LongTensor] = None
|
|
|
|
|
|
|
|
|
class Qwen2VLRotaryEmbedding(nn.Module):
|
|
|
def __init__(
|
|
|
self,
|
|
|
dim=None,
|
|
|
max_position_embeddings=2048,
|
|
|
base=10000,
|
|
|
device=None,
|
|
|
scaling_factor=1.0,
|
|
|
rope_type="default",
|
|
|
config: Optional[Qwen2VLConfig] = None,
|
|
|
):
|
|
|
super().__init__()
|
|
|
|
|
|
self.rope_kwargs = {}
|
|
|
if config is None:
|
|
|
logger.warning_once(
|
|
|
"`Qwen2VLRotaryEmbedding` can now be fully parameterized by passing the model config through the "
|
|
|
"`config` argument. All other arguments will be removed in v4.46"
|
|
|
)
|
|
|
self.rope_kwargs = {
|
|
|
"rope_type": rope_type,
|
|
|
"factor": scaling_factor,
|
|
|
"dim": dim,
|
|
|
"base": base,
|
|
|
"max_position_embeddings": max_position_embeddings,
|
|
|
}
|
|
|
self.rope_type = rope_type
|
|
|
self.max_seq_len_cached = max_position_embeddings
|
|
|
self.original_max_seq_len = max_position_embeddings
|
|
|
else:
|
|
|
|
|
|
if config.rope_scaling is not None:
|
|
|
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
|
|
else:
|
|
|
self.rope_type = "default"
|
|
|
self.max_seq_len_cached = config.max_position_embeddings
|
|
|
self.original_max_seq_len = config.max_position_embeddings
|
|
|
|
|
|
self.config = config
|
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, **self.rope_kwargs)
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
self.original_inv_freq = self.inv_freq
|
|
|
|
|
|
def _dynamic_frequency_update(self, position_ids, device):
|
|
|
"""
|
|
|
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
|
|
1 - growing beyond the cached sequence length (allow scaling)
|
|
|
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
|
|
"""
|
|
|
seq_len = torch.max(position_ids) + 1
|
|
|
if seq_len > self.max_seq_len_cached:
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(
|
|
|
self.config, device, seq_len=seq_len, **self.rope_kwargs
|
|
|
)
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
self.max_seq_len_cached = seq_len
|
|
|
|
|
|
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len:
|
|
|
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
|
|
self.max_seq_len_cached = self.original_max_seq_len
|
|
|
|
|
|
@torch.no_grad()
|
|
|
def forward(self, x, position_ids):
|
|
|
if "dynamic" in self.rope_type:
|
|
|
self._dynamic_frequency_update(position_ids, device=x.device)
|
|
|
|
|
|
|
|
|
|
|
|
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
|
|
position_ids_expanded = position_ids[:, :, None, :].float()
|
|
|
|
|
|
device_type = x.device.type
|
|
|
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
|
|
with torch.autocast(device_type=device_type, enabled=False):
|
|
|
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
|
|
emb = torch.cat((freqs, freqs), dim=-1)
|
|
|
cos = emb.cos()
|
|
|
sin = emb.sin()
|
|
|
|
|
|
|
|
|
cos = cos * self.attention_scaling
|
|
|
sin = sin * self.attention_scaling
|
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
def rotate_half(x):
|
|
|
"""Rotates half the hidden dims of the input."""
|
|
|
x1 = x[..., : x.shape[-1] // 2]
|
|
|
x2 = x[..., x.shape[-1] // 2:]
|
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb_vision(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
|
|
orig_dtype = tensor.dtype
|
|
|
tensor = tensor.float()
|
|
|
cos = freqs.cos()
|
|
|
sin = freqs.sin()
|
|
|
cos = cos.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
|
|
sin = sin.unsqueeze(1).repeat(1, 1, 2).unsqueeze(0).float()
|
|
|
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
|
|
output = output.to(orig_dtype)
|
|
|
return output
|
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb_vision_batch(tensor: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
|
|
orig_dtype = tensor.dtype
|
|
|
tensor = tensor.float()
|
|
|
cos = freqs.cos()
|
|
|
sin = freqs.sin()
|
|
|
cos = cos.repeat(1, 1, 1, 2).float()
|
|
|
sin = sin.repeat(1, 1, 1, 2).float()
|
|
|
output = (tensor * cos) + (rotate_half(tensor) * sin)
|
|
|
output = output.to(orig_dtype)
|
|
|
return output
|
|
|
|
|
|
|
|
|
class VisionRotaryEmbedding(nn.Module):
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
|
super().__init__()
|
|
|
inv_freq = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
|
|
def forward(self, seqlen: int, scale_factor: float = 1.0) -> torch.Tensor:
|
|
|
|
|
|
scaled_inv_freq = self.inv_freq * scale_factor
|
|
|
seq = torch.arange(seqlen, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
|
|
freqs = torch.outer(seq, scaled_inv_freq)
|
|
|
return freqs
|
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module):
|
|
|
def __init__(
|
|
|
self,
|
|
|
patch_size: int = 14,
|
|
|
temporal_patch_size: int = 2,
|
|
|
in_channels: int = 3,
|
|
|
embed_dim: int = 1152,
|
|
|
) -> None:
|
|
|
super().__init__()
|
|
|
self.patch_size = patch_size
|
|
|
self.temporal_patch_size = temporal_patch_size
|
|
|
self.in_channels = in_channels
|
|
|
self.embed_dim = embed_dim
|
|
|
|
|
|
kernel_size = [temporal_patch_size, patch_size, patch_size]
|
|
|
self.proj = nn.Conv3d(in_channels, embed_dim, kernel_size=kernel_size, stride=kernel_size, bias=False)
|
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
|
target_dtype = self.proj.weight.dtype
|
|
|
if is_torch_npu_available():
|
|
|
|
|
|
hidden_states = F.linear(hidden_states, self.proj.weight.view(self.embed_dim, -1))
|
|
|
else:
|
|
|
hidden_states = hidden_states.view(
|
|
|
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
|
|
|
)
|
|
|
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class PatchMerger(nn.Module):
|
|
|
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2) -> None:
|
|
|
super().__init__()
|
|
|
self.hidden_size = context_dim * (spatial_merge_size ** 2)
|
|
|
self.ln_q = nn.LayerNorm(context_dim, eps=1e-6)
|
|
|
self.mlp = nn.Sequential(
|
|
|
nn.Linear(self.hidden_size, self.hidden_size),
|
|
|
nn.GELU(),
|
|
|
nn.Linear(self.hidden_size, dim),
|
|
|
)
|
|
|
|
|
|
def forward(self, x: torch.Tensor, grid_thw) -> torch.Tensor:
|
|
|
x = self.mlp(self.ln_q(x).view(-1, self.hidden_size))
|
|
|
return x
|
|
|
|
|
|
|
|
|
class VisionMlp(nn.Module):
|
|
|
def __init__(self, dim: int, hidden_dim: int, hidden_act: str) -> None:
|
|
|
super().__init__()
|
|
|
self.fc1 = nn.Linear(dim, hidden_dim)
|
|
|
self.act = ACT2FN[hidden_act]
|
|
|
self.fc2 = nn.Linear(hidden_dim, dim)
|
|
|
|
|
|
def forward(self, x) -> torch.Tensor:
|
|
|
return self.fc2(self.act(self.fc1(x)))
|
|
|
|
|
|
|
|
|
class VisionAttention(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16, ) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.head_dim = dim // num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
cu_seqlens: torch.Tensor,
|
|
|
rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
seq_length = hidden_states.shape[0]
|
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
|
|
attention_mask = torch.full(
|
|
|
[1, seq_length, seq_length], torch.finfo(q.dtype).min, device=q.device, dtype=q.dtype
|
|
|
)
|
|
|
for i in range(1, len(cu_seqlens)):
|
|
|
attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = 0
|
|
|
|
|
|
q = q.transpose(0, 1)
|
|
|
k = k.transpose(0, 1)
|
|
|
v = v.transpose(0, 1)
|
|
|
attn_weights = torch.matmul(q, k.transpose(1, 2)) / math.sqrt(self.head_dim)
|
|
|
attn_weights = attn_weights + attention_mask
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
|
|
attn_output = torch.matmul(attn_weights, v)
|
|
|
attn_output = attn_output.transpose(0, 1)
|
|
|
attn_output = attn_output.reshape(seq_length, -1)
|
|
|
attn_output = self.proj(attn_output)
|
|
|
return attn_output
|
|
|
|
|
|
|
|
|
class BatchVisionAttention(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.head_dim = dim // num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
attention_mask: torch.Tensor,
|
|
|
rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
batch_size, seq_len, _ = hidden_states.shape
|
|
|
|
|
|
q, k, v = self.qkv(hidden_states).reshape(batch_size, seq_len, 3, self.num_heads, self.head_dim).permute(2, 0,
|
|
|
3, 1,
|
|
|
4).unbind(
|
|
|
0)
|
|
|
|
|
|
|
|
|
if rotary_pos_emb is not None:
|
|
|
rotary_pos_emb = rotary_pos_emb.unsqueeze(1)
|
|
|
q = apply_rotary_pos_emb_vision_batch(q, rotary_pos_emb)
|
|
|
k = apply_rotary_pos_emb_vision_batch(k, rotary_pos_emb)
|
|
|
|
|
|
attn_weights = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
|
|
if attention_mask is not None:
|
|
|
attn_weights = attn_weights + attention_mask
|
|
|
|
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(q.dtype)
|
|
|
|
|
|
attn_output = torch.matmul(attn_weights, v)
|
|
|
attn_output = attn_output.transpose(1, 2).reshape(batch_size, seq_len, -1)
|
|
|
return self.proj(attn_output)
|
|
|
|
|
|
|
|
|
class VisionXformerAttention(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.head_dim = dim // num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
cu_seqlens: torch.Tensor,
|
|
|
rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
seq_length = hidden_states.shape[0]
|
|
|
|
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
|
|
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb)
|
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb)
|
|
|
|
|
|
seqlens = [cu_seqlens[0]] + [cu_seqlens[i] - cu_seqlens[i - 1] for i in range(1, len(cu_seqlens))]
|
|
|
attn_bias = xops.fmha.BlockDiagonalMask.from_seqlens(seqlens)
|
|
|
|
|
|
attn_output = xops.memory_efficient_attention(
|
|
|
q, k, v.unsqueeze(0),
|
|
|
attn_bias=attn_bias,
|
|
|
scale=1.0 / math.sqrt(self.head_dim)
|
|
|
)
|
|
|
attn_output = attn_output.reshape(seq_length, -1)
|
|
|
attn_output = self.proj(attn_output)
|
|
|
return attn_output
|
|
|
|
|
|
|
|
|
class BatchVisionXformerAttention(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.head_dim = dim // num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
attention_mask: torch.Tensor,
|
|
|
rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
seq_length = hidden_states.shape[0]
|
|
|
batch_size, seq_len = hidden_states.shape
|
|
|
|
|
|
q, k, v = self.qkv(hidden_states).reshape(batch_size, seq_len, 3, self.num_heads, self.head_dim).permute(2, 0,
|
|
|
3, 1,
|
|
|
4).unbind(
|
|
|
0)
|
|
|
|
|
|
|
|
|
if rotary_pos_emb is not None:
|
|
|
rotary_pos_emb = rotary_pos_emb.unsqueeze(1)
|
|
|
q = apply_rotary_pos_emb_vision_batch(q, rotary_pos_emb)
|
|
|
k = apply_rotary_pos_emb_vision_batch(k, rotary_pos_emb)
|
|
|
|
|
|
attn_output = xops.memory_efficient_attention(
|
|
|
q, k, v,
|
|
|
attn_bias=attention_mask,
|
|
|
scale=1.0 / math.sqrt(self.head_dim)
|
|
|
)
|
|
|
attn_output = attn_output.reshape(batch_size, seq_len, -1)
|
|
|
return self.proj(attn_output)
|
|
|
|
|
|
|
|
|
class VisionFlashAttention2(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
seq_length = hidden_states.shape[0]
|
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
|
|
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max().item()
|
|
|
attn_output = flash_attn_varlen_func(q, k, v, cu_seqlens, cu_seqlens, max_seqlen, max_seqlen).reshape(
|
|
|
seq_length, -1
|
|
|
)
|
|
|
attn_output = self.proj(attn_output)
|
|
|
return attn_output
|
|
|
|
|
|
|
|
|
class BatchVisionFlashAttention2(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
batch_size, seq_len, _ = hidden_states.shape
|
|
|
|
|
|
q, k, v = self.qkv(hidden_states).reshape(batch_size, seq_len, 3, self.num_heads, -1).permute(2, 0, 3, 1,
|
|
|
4).unbind(0)
|
|
|
|
|
|
if rotary_pos_emb is not None:
|
|
|
rotary_pos_emb = rotary_pos_emb.unsqueeze(1)
|
|
|
q = apply_rotary_pos_emb_vision_batch(q, rotary_pos_emb)
|
|
|
k = apply_rotary_pos_emb_vision_batch(k, rotary_pos_emb)
|
|
|
|
|
|
q = rearrange(q, 'b h l d -> b l h d')
|
|
|
k = rearrange(k, 'b h l d -> b l h d')
|
|
|
v = rearrange(v, 'b h l d -> b l h d')
|
|
|
|
|
|
attn_output = _flash_attention_forward(q, k, v).reshape(batch_size, seq_len, -1)
|
|
|
attn_output = self.proj(attn_output)
|
|
|
return attn_output
|
|
|
|
|
|
|
|
|
class VisionSdpaAttention(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self, hidden_states: torch.Tensor, cu_seqlens: torch.Tensor, rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
seq_length = hidden_states.shape[0]
|
|
|
q, k, v = self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
|
q = apply_rotary_pos_emb_vision(q.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
k = apply_rotary_pos_emb_vision(k.unsqueeze(0), rotary_pos_emb).squeeze(0)
|
|
|
|
|
|
attention_mask = torch.zeros([1, seq_length, seq_length], device=q.device, dtype=torch.bool)
|
|
|
for i in range(1, len(cu_seqlens)):
|
|
|
attention_mask[..., cu_seqlens[i - 1]: cu_seqlens[i], cu_seqlens[i - 1]: cu_seqlens[i]] = True
|
|
|
q = q.transpose(0, 1)
|
|
|
k = k.transpose(0, 1)
|
|
|
v = v.transpose(0, 1)
|
|
|
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
|
|
attn_output = attn_output.transpose(0, 1)
|
|
|
attn_output = attn_output.reshape(seq_length, -1)
|
|
|
attn_output = self.proj(attn_output)
|
|
|
return attn_output
|
|
|
|
|
|
|
|
|
class BatchVisionSdpaAttention(nn.Module):
|
|
|
def __init__(self, dim: int, num_heads: int = 16) -> None:
|
|
|
super().__init__()
|
|
|
self.num_heads = num_heads
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
|
|
self.proj = nn.Linear(dim, dim)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
attention_mask: torch.Tensor = None,
|
|
|
rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
batch_size, seq_len, _ = hidden_states.shape
|
|
|
q, k, v = self.qkv(hidden_states).reshape(batch_size, seq_len, 3, self.num_heads, -1).permute(2, 0, 3, 1,
|
|
|
4).unbind(0)
|
|
|
|
|
|
|
|
|
if rotary_pos_emb is not None:
|
|
|
rotary_pos_emb = rotary_pos_emb.unsqueeze(1)
|
|
|
q = apply_rotary_pos_emb_vision_batch(q, rotary_pos_emb)
|
|
|
k = apply_rotary_pos_emb_vision_batch(k, rotary_pos_emb)
|
|
|
|
|
|
attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0)
|
|
|
attn_output = attn_output.transpose(1, 2)
|
|
|
attn_output = attn_output.reshape(batch_size, seq_len, -1)
|
|
|
attn_output = self.proj(attn_output)
|
|
|
return attn_output
|
|
|
|
|
|
|
|
|
QWEN2_VL_VISION_ATTENTION_CLASSES = {
|
|
|
"eager": VisionAttention,
|
|
|
"flash_attention_2": VisionFlashAttention2,
|
|
|
"sdpa": VisionSdpaAttention,
|
|
|
"xformers": VisionXformerAttention,
|
|
|
}
|
|
|
|
|
|
QWEN2_VL_VISION_BATCH_ATTENTION_CLASSES = {
|
|
|
"eager": BatchVisionAttention,
|
|
|
"flash_attention_2": VisionFlashAttention2,
|
|
|
"sdpa": BatchVisionSdpaAttention,
|
|
|
}
|
|
|
|
|
|
|
|
|
class Qwen2VLVisionBlock(nn.Module):
|
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
|
|
super().__init__()
|
|
|
|
|
|
self.norm1 = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
|
|
self.norm2 = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
|
|
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
|
|
|
|
|
self.attn = QWEN2_VL_VISION_ATTENTION_CLASSES[attn_implementation](
|
|
|
config.embed_dim, num_heads=config.num_heads,
|
|
|
)
|
|
|
self.mlp = VisionMlp(dim=config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
|
|
|
|
|
|
def forward(self, hidden_states, cu_seqlens, rotary_pos_emb, grid_thw) -> torch.Tensor:
|
|
|
hidden_states = hidden_states + self.attn(
|
|
|
self.norm1(hidden_states), cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb
|
|
|
)
|
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
class Qwen2VLBatchVisionBlock(nn.Module):
|
|
|
def __init__(self, config, attn_implementation: str = "sdpa") -> None:
|
|
|
super().__init__()
|
|
|
self.norm1 = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
|
|
self.norm2 = nn.LayerNorm(config.embed_dim, eps=1e-6)
|
|
|
mlp_hidden_dim = int(config.embed_dim * config.mlp_ratio)
|
|
|
|
|
|
self.attn = QWEN2_VL_VISION_BATCH_ATTENTION_CLASSES[attn_implementation](
|
|
|
config.embed_dim, num_heads=config.num_heads,
|
|
|
)
|
|
|
self.mlp = VisionMlp(config.embed_dim, hidden_dim=mlp_hidden_dim, hidden_act=config.hidden_act)
|
|
|
|
|
|
def forward(
|
|
|
self,
|
|
|
hidden_states: torch.Tensor,
|
|
|
attention_mask: torch.Tensor = None,
|
|
|
rotary_pos_emb: torch.Tensor = None
|
|
|
) -> torch.Tensor:
|
|
|
|
|
|
hidden_states = hidden_states + self.attn(
|
|
|
self.norm1(hidden_states), attention_mask=attention_mask, rotary_pos_emb=rotary_pos_emb
|
|
|
)
|
|
|
|
|
|
hidden_states = hidden_states + self.mlp(self.norm2(hidden_states))
|
|
|
return hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position(
|
|
|
attention_mask: torch.Tensor,
|
|
|
sequence_length: int,
|
|
|
target_length: int,
|
|
|
dtype: torch.dtype,
|
|
|
device: torch.device,
|
|
|
min_dtype: float,
|
|
|
cache_position: torch.Tensor,
|
|
|
batch_size: int,
|
|
|
):
|
|
|
"""
|
|
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
|
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
|
|
|
|
|
Args:
|
|
|
attention_mask (`torch.Tensor`):
|
|
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
|
|
sequence_length (`int`):
|
|
|
The sequence length being processed.
|
|
|
target_length (`int`):
|
|
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
|
|
dtype (`torch.dtype`):
|
|
|
The dtype to use for the 4D attention mask.
|
|
|
device (`torch.device`):
|
|
|
The device to plcae the 4D attention mask on.
|
|
|
min_dtype (`float`):
|
|
|
The minimum value representable with the dtype `dtype`.
|
|
|
cache_position (`torch.Tensor`):
|
|
|
Indices depicting the position of the input sequence tokens in the sequence.
|
|
|
batch_size (`torch.Tensor`):
|
|
|
Batch size.
|
|
|
"""
|
|
|
if attention_mask is not None and attention_mask.dim() == 4:
|
|
|
|
|
|
causal_mask = attention_mask
|
|
|
else:
|
|
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
|
|
if sequence_length != 1:
|
|
|
causal_mask = torch.triu(causal_mask, diagonal=1)
|
|
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
|
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
|
|
if attention_mask is not None:
|
|
|
causal_mask = causal_mask.clone()
|
|
|
mask_length = attention_mask.shape[-1]
|
|
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
|
|
padding_mask = padding_mask == 0
|
|
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
|
|
padding_mask, min_dtype
|
|
|
)
|
|
|
|
|
|
return causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
class Qwen2RMSNorm(nn.Module):
|
|
|
def __init__(self, hidden_size, eps=1e-6):
|
|
|
"""
|
|
|
Qwen2RMSNorm is equivalent to T5nn.LayerNorm
|
|
|
"""
|
|
|
super().__init__()
|
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
|
self.variance_epsilon = eps
|
|
|
|
|
|
def forward(self, hidden_states):
|
|
|
input_dtype = hidden_states.dtype
|
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
|
return self.weight * hidden_states.to(input_dtype)
|
|
|
|
|
|
def extra_repr(self):
|
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
|
|
|
|
|
|
|
|
|
|
class Qwen2MLP(nn.Module):
|
|
|
def __init__(self, config):
|
|
|
super().__init__()
|
|
|
self.hidden_size = config.hidden_size
|
|
|
self.intermediate_size = config.intermediate_size
|
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
|
|
self.act_fn = ACT2FN[config.hidden_act]
|
|
|
|
|
|
def forward(self, hidden_state):
|
|
|
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
|
|
|
|
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
|
"""
|
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
|
"""
|
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
|
if n_rep == 1:
|
|
|
return hidden_states
|
|
|
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
|
|
|
|
|
|
|
class Qwen2VLPreTrainedModel(PreTrainedModel):
|
|
|
config_class = Qwen2VLConfig
|
|
|
base_model_prefix = "model"
|
|
|
supports_gradient_checkpointing = True
|
|
|
_no_split_modules = ["Qwen2VLDecoderLayer", "Qwen2VLVisionBlock"]
|
|
|
_skip_keys_device_placement = "past_key_values"
|
|
|
_supports_flash_attn_2 = True
|
|
|
_supports_sdpa = True
|
|
|
_supports_cache_class = True
|
|
|
_supports_static_cache = True
|
|
|
|
|
|
def _init_weights(self, module):
|
|
|
std = self.config.initializer_range
|
|
|
if isinstance(module, (nn.Linear, nn.Conv3d)):
|
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
|
if module.bias is not None:
|
|
|
module.bias.data.zero_()
|
|
|
elif isinstance(module, nn.Embedding):
|
|
|
module.weight.data.normal_(mean=0.0, std=std)
|
|
|
if module.padding_idx is not None:
|
|
|
module.weight.data[module.padding_idx].zero_()
|
|
|
|
|
|
|
|
|
class Qwen2VisionTransformerPretrainedModel(Qwen2VLPreTrainedModel):
|
|
|
config_class = Qwen2VLVisionConfig
|
|
|
_no_split_modules = ["Qwen2VLVisionBlock"]
|
|
|
|
|
|
def __init__(self, config) -> None:
|
|
|
super().__init__(config)
|
|
|
self.spatial_merge_size = config.spatial_merge_size
|
|
|
|
|
|
self.patch_embed = PatchEmbed(
|
|
|
patch_size=config.patch_size,
|
|
|
temporal_patch_size=config.temporal_patch_size,
|
|
|
in_channels=config.in_channels,
|
|
|
embed_dim=config.embed_dim,
|
|
|
)
|
|
|
|
|
|
head_dim = config.embed_dim // config.num_heads
|
|
|
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
|
|
|
|
|
self.blocks = nn.ModuleList(
|
|
|
[Qwen2VLVisionBlock(config, config.attn_implementation) for _ in range(config.depth)]
|
|
|
)
|
|
|
self.merger = PatchMerger(
|
|
|
dim=config.hidden_size, context_dim=config.embed_dim, spatial_merge_size=config.spatial_merge_size
|
|
|
)
|
|
|
|
|
|
def get_dtype(self) -> torch.dtype:
|
|
|
return self.blocks[0].mlp.fc2.weight.dtype
|
|
|
|
|
|
def get_device(self) -> torch.device:
|
|
|
return self.blocks[0].mlp.fc2.weight.device
|
|
|
|
|
|
def rot_pos_emb(self, grid_thw):
|
|
|
pos_ids = []
|
|
|
for t, h, w in grid_thw:
|
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
|
hpos_ids = hpos_ids.reshape(
|
|
|
h // self.spatial_merge_size,
|
|
|
self.spatial_merge_size,
|
|
|
w // self.spatial_merge_size,
|
|
|
self.spatial_merge_size,
|
|
|
)
|
|
|
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
|
|
hpos_ids = hpos_ids.flatten()
|
|
|
|
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
|
wpos_ids = wpos_ids.reshape(
|
|
|
h // self.spatial_merge_size,
|
|
|
self.spatial_merge_size,
|
|
|
w // self.spatial_merge_size,
|
|
|
self.spatial_merge_size,
|
|
|
)
|
|
|
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
|
|
wpos_ids = wpos_ids.flatten()
|
|
|
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
|
pos_ids = torch.cat(pos_ids, dim=0)
|
|
|
max_grid_size = grid_thw[:, 1:].max()
|
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
|
return rotary_pos_emb
|
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor, grid_thw: torch.Tensor) -> torch.Tensor:
|
|
|
hidden_states = self.patch_embed(hidden_states)
|
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
|
|
|
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
|
|
dim=0, dtype=torch.int32
|
|
|
)
|
|
|
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
|
|
|
|
|
for blk in self.blocks:
|
|
|
hidden_states = blk(hidden_states,
|
|
|
cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb,
|
|
|
grid_thw=grid_thw)
|
|
|
|
|
|
hidden_states = self.merger(hidden_states, grid_thw)
|
|
|
return hidden_states
|
|
|
|