--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: deeepfake-audio-555 results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9247311827956989 --- # deeepfake-audio-555 This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4156 - Accuracy: 0.9247 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6428 | 1.0 | 46 | 0.6271 | 0.7204 | | 0.4622 | 2.0 | 92 | 0.4054 | 0.8602 | | 0.3098 | 3.0 | 138 | 0.5667 | 0.8172 | | 0.2696 | 4.0 | 184 | 0.4179 | 0.8817 | | 0.2806 | 5.0 | 230 | 0.4129 | 0.8710 | | 0.2078 | 6.0 | 276 | 0.3541 | 0.9140 | | 0.1652 | 7.0 | 322 | 0.3338 | 0.9140 | | 0.0871 | 8.0 | 368 | 0.4072 | 0.9140 | | 0.1267 | 9.0 | 414 | 0.3649 | 0.9247 | | 0.0651 | 10.0 | 460 | 0.3436 | 0.9355 | | 0.0976 | 11.0 | 506 | 0.4163 | 0.9140 | | 0.0186 | 12.0 | 552 | 0.4164 | 0.9247 | | 0.0324 | 13.0 | 598 | 0.4156 | 0.9247 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2