--- library_name: transformers license: apache-2.0 base_model: facebook/dinov2-base tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: dinov2-Base-finetuned-chest_xray results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.978 - name: F1 type: f1 value: 0.9779992079714871 --- # dinov2-Base-finetuned-chest_xray This model is a fine-tuned version of [facebook/dinov2-base](https://huggingface.co/facebook/dinov2-base) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1155 - Accuracy: 0.978 - F1: 0.9780 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.6168 | 1.0 | 500 | 0.3097 | 0.881 | 0.8804 | | 0.4064 | 2.0 | 1000 | 0.2299 | 0.931 | 0.9309 | | 0.2011 | 3.0 | 1500 | 0.1904 | 0.943 | 0.9430 | | 0.148 | 4.0 | 2000 | 0.2213 | 0.94 | 0.9399 | | 0.2495 | 5.0 | 2500 | 0.2518 | 0.933 | 0.9328 | | 0.1926 | 6.0 | 3000 | 0.1155 | 0.966 | 0.9660 | | 0.1565 | 7.0 | 3500 | 0.1711 | 0.959 | 0.9590 | | 0.1881 | 8.0 | 4000 | 0.1235 | 0.967 | 0.9670 | | 0.139 | 9.0 | 4500 | 0.1285 | 0.97 | 0.9700 | | 0.1317 | 10.0 | 5000 | 0.1155 | 0.978 | 0.9780 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.0