Update README.md
Browse files
README.md
CHANGED
|
@@ -35,13 +35,16 @@ model = SentenceTransformer('GiliGold/Knesset-multi-e5-large')
|
|
| 35 |
embedding_vector = model.encode(sentence)
|
| 36 |
|
| 37 |
# Load the valence model
|
| 38 |
-
#Option 1:
|
| 39 |
with open("valence_model.pkl", "rb") as file:
|
| 40 |
valence_model = pickle.load(file)
|
| 41 |
-
|
|
|
|
| 42 |
from huggingface_hub import hf_hub_download
|
| 43 |
repo_id = "GiliGold/VAD_binomial_regression_models"
|
| 44 |
-
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Assume `embedding_vector` is the vector obtained from the Knesset-multi model
|
| 47 |
valence_score = valence_model.predict([embedding_vector])
|
|
|
|
| 35 |
embedding_vector = model.encode(sentence)
|
| 36 |
|
| 37 |
# Load the valence model
|
| 38 |
+
#Option 1: Manually download files from https://huggingface.co/GiliGold/VAD_binomial_regression_models/tree/main)
|
| 39 |
with open("valence_model.pkl", "rb") as file:
|
| 40 |
valence_model = pickle.load(file)
|
| 41 |
+
|
| 42 |
+
#Option 2: Download using Hugging Face hub
|
| 43 |
from huggingface_hub import hf_hub_download
|
| 44 |
repo_id = "GiliGold/VAD_binomial_regression_models"
|
| 45 |
+
model_v_path = hf_hub_download(repo_id=repo_id, filename="valence_model.pkl")
|
| 46 |
+
with open(model_v_path, "rb") as f:
|
| 47 |
+
valence_model = pickle.load(f)
|
| 48 |
|
| 49 |
# Assume `embedding_vector` is the vector obtained from the Knesset-multi model
|
| 50 |
valence_score = valence_model.predict([embedding_vector])
|