Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pipeline_tag: token-classification
|
| 3 |
+
tags:
|
| 4 |
+
- named-entity-recognition
|
| 5 |
+
- sequence-tagger-model
|
| 6 |
+
widget:
|
| 7 |
+
- text: Мене звуть Амадей Вольфганг, я живу в Берліні
|
| 8 |
+
inference:
|
| 9 |
+
parameters:
|
| 10 |
+
aggregation_strategy: simple
|
| 11 |
+
grouped_entities: true
|
| 12 |
+
language:
|
| 13 |
+
- da
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
xlm-roberta model trained on ukrainian ner dataset
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 21 |
+
from transformers import pipeline
|
| 22 |
+
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained("EvanD/xlm-roberta-base-ukrainian-ner-ukrner")
|
| 24 |
+
ner_model = AutoModelForTokenClassification.from_pretrained("EvanD/xlm-roberta-base-ukrainian-ner-ukrner")
|
| 25 |
+
|
| 26 |
+
nlp = pipeline("ner", model=ner_model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 27 |
+
example = "Мене звуть Амадей Вольфганг, я живу в Берліні"
|
| 28 |
+
|
| 29 |
+
ner_results = nlp(example)
|
| 30 |
+
print(ner_results)
|
| 31 |
+
```
|