CharlesPing commited on
Commit
f09779b
·
verified ·
1 Parent(s): fe11a10

Add new CrossEncoder model

Browse files
Files changed (7) hide show
  1. README.md +425 -0
  2. config.json +35 -0
  3. model.safetensors +3 -0
  4. special_tokens_map.json +37 -0
  5. tokenizer.json +0 -0
  6. tokenizer_config.json +65 -0
  7. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - cross-encoder
5
+ - generated_from_trainer
6
+ - dataset_size:18549
7
+ - loss:BinaryCrossEntropyLoss
8
+ base_model: cross-encoder/ms-marco-MiniLM-L6-v2
9
+ datasets:
10
+ - CharlesPing/climate-cross-encoder-mixed-neg-v1
11
+ pipeline_tag: text-ranking
12
+ library_name: sentence-transformers
13
+ metrics:
14
+ - map
15
+ - mrr@10
16
+ - ndcg@10
17
+ model-index:
18
+ - name: CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2
19
+ results:
20
+ - task:
21
+ type: cross-encoder-reranking
22
+ name: Cross Encoder Reranking
23
+ dataset:
24
+ name: climate rerank multineg
25
+ type: climate-rerank-multineg
26
+ metrics:
27
+ - type: map
28
+ value: 0.9339128697042365
29
+ name: Map
30
+ - type: mrr@10
31
+ value: 0.9415467625899281
32
+ name: Mrr@10
33
+ - type: ndcg@10
34
+ value: 0.9532837597926094
35
+ name: Ndcg@10
36
+ ---
37
+
38
+ # CrossEncoder based on cross-encoder/ms-marco-MiniLM-L6-v2
39
+
40
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) on the [climate-cross-encoder-mixed-neg-v1](https://huggingface.co/datasets/CharlesPing/climate-cross-encoder-mixed-neg-v1) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
41
+
42
+ ## Model Details
43
+
44
+ ### Model Description
45
+ - **Model Type:** Cross Encoder
46
+ - **Base model:** [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) <!-- at revision ce0834f22110de6d9222af7a7a03628121708969 -->
47
+ - **Maximum Sequence Length:** 512 tokens
48
+ - **Number of Output Labels:** 1 label
49
+ - **Training Dataset:**
50
+ - [climate-cross-encoder-mixed-neg-v1](https://huggingface.co/datasets/CharlesPing/climate-cross-encoder-mixed-neg-v1)
51
+ <!-- - **Language:** Unknown -->
52
+ <!-- - **License:** Unknown -->
53
+
54
+ ### Model Sources
55
+
56
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
57
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
58
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
59
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
60
+
61
+ ## Usage
62
+
63
+ ### Direct Usage (Sentence Transformers)
64
+
65
+ First install the Sentence Transformers library:
66
+
67
+ ```bash
68
+ pip install -U sentence-transformers
69
+ ```
70
+
71
+ Then you can load this model and run inference.
72
+ ```python
73
+ from sentence_transformers import CrossEncoder
74
+
75
+ # Download from the 🤗 Hub
76
+ model = CrossEncoder("CharlesPing/finetuned-ce-climate-multineg-v1")
77
+ # Get scores for pairs of texts
78
+ pairs = [
79
+ ['Within a decade, certain kinds of branching and plate coral could be extinct, reef scientists say, along with a variety of small fish that rely on them for protection from predators.', 'They are important apex predators feeding on a wide variety of smaller fish and cephalopods.'],
80
+ ['Armed conflicts over resources may become a reality, and have the potential to escalate into nuclear war.', 'The length of the track is 1,000 meters.'],
81
+ ['The natural cycle adds and removes CO2 to keep a balance; humans add extra CO2 without removing any.', 'Their post office was established in February 1882 and closed in December 1942'],
82
+ ['The atmosphere of the Earth is less able to absorb shortwave radiation from the Sun than thermal radiation coming from the surface.', 'Its fundamental principle is that of balance – the energy that the Earth absorbs from the sun each year is equal to that which it loses to space by radiation.'],
83
+ ['But then, just over a year ago, Mike Wallace, a hydrologist with 30 years’ experience, noticed while researching his PhD that they had omitted some key information[…] his results were surprising: there has been no reduction in oceanic pH', 'It is also known for its Kampot fish sauce and durian.'],
84
+ ]
85
+ scores = model.predict(pairs)
86
+ print(scores.shape)
87
+ # (5,)
88
+
89
+ # Or rank different texts based on similarity to a single text
90
+ ranks = model.rank(
91
+ 'Within a decade, certain kinds of branching and plate coral could be extinct, reef scientists say, along with a variety of small fish that rely on them for protection from predators.',
92
+ [
93
+ 'They are important apex predators feeding on a wide variety of smaller fish and cephalopods.',
94
+ 'The length of the track is 1,000 meters.',
95
+ 'Their post office was established in February 1882 and closed in December 1942',
96
+ 'Its fundamental principle is that of balance – the energy that the Earth absorbs from the sun each year is equal to that which it loses to space by radiation.',
97
+ 'It is also known for its Kampot fish sauce and durian.',
98
+ ]
99
+ )
100
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
101
+ ```
102
+
103
+ <!--
104
+ ### Direct Usage (Transformers)
105
+
106
+ <details><summary>Click to see the direct usage in Transformers</summary>
107
+
108
+ </details>
109
+ -->
110
+
111
+ <!--
112
+ ### Downstream Usage (Sentence Transformers)
113
+
114
+ You can finetune this model on your own dataset.
115
+
116
+ <details><summary>Click to expand</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Out-of-Scope Use
123
+
124
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
125
+ -->
126
+
127
+ ## Evaluation
128
+
129
+ ### Metrics
130
+
131
+ #### Cross Encoder Reranking
132
+
133
+ * Dataset: `climate-rerank-multineg`
134
+ * Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
135
+ ```json
136
+ {
137
+ "at_k": 10
138
+ }
139
+ ```
140
+
141
+ | Metric | Value |
142
+ |:------------|:-----------|
143
+ | map | 0.9339 |
144
+ | mrr@10 | 0.9415 |
145
+ | **ndcg@10** | **0.9533** |
146
+
147
+ <!--
148
+ ## Bias, Risks and Limitations
149
+
150
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
151
+ -->
152
+
153
+ <!--
154
+ ### Recommendations
155
+
156
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
157
+ -->
158
+
159
+ ## Training Details
160
+
161
+ ### Training Dataset
162
+
163
+ #### climate-cross-encoder-mixed-neg-v1
164
+
165
+ * Dataset: [climate-cross-encoder-mixed-neg-v1](https://huggingface.co/datasets/CharlesPing/climate-cross-encoder-mixed-neg-v1) at [7ee5ee6](https://huggingface.co/datasets/CharlesPing/climate-cross-encoder-mixed-neg-v1/tree/7ee5ee6e1a6c7731a99935bf686edaf21ad91f0c)
166
+ * Size: 18,549 training samples
167
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
168
+ * Approximate statistics based on the first 1000 samples:
169
+ | | query | doc | label |
170
+ |:--------|:-------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
171
+ | type | string | string | float |
172
+ | details | <ul><li>min: 26 characters</li><li>mean: 123.32 characters</li><li>max: 332 characters</li></ul> | <ul><li>min: 20 characters</li><li>mean: 144.94 characters</li><li>max: 1979 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.21</li><li>max: 1.0</li></ul> |
173
+ * Samples:
174
+ | query | doc | label |
175
+ |:----------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
176
+ | <code>CO2 emissions were much smaller 100 years ago.</code> | <code>For example, in the Internet protocol suite, the contents of a web page are encapsulated with an HTTP header, then by a TCP header, an IP header, and, finally, by a frame header and trailer.</code> | <code>0.0</code> |
177
+ | <code>Though CRU neglected to provide an exact list of temperature stations, it could not have hid or tampered with data.</code> | <code>In Informatics, dummy data is benign information that does not contain any useful data, but serves to reserve space where real data is nominally present.</code> | <code>0.0</code> |
178
+ | <code>Postma's model contains many simple errors; in no way does Postma undermine the existence or necessity of the greenhouse effect.</code> | <code>Arizona State University at the West Campus is one of four university campuses that compose Arizona State University (ASU).</code> | <code>0.0</code> |
179
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
180
+ ```json
181
+ {
182
+ "activation_fn": "torch.nn.modules.linear.Identity",
183
+ "pos_weight": null
184
+ }
185
+ ```
186
+
187
+ ### Evaluation Dataset
188
+
189
+ #### climate-cross-encoder-mixed-neg-v1
190
+
191
+ * Dataset: [climate-cross-encoder-mixed-neg-v1](https://huggingface.co/datasets/CharlesPing/climate-cross-encoder-mixed-neg-v1) at [7ee5ee6](https://huggingface.co/datasets/CharlesPing/climate-cross-encoder-mixed-neg-v1/tree/7ee5ee6e1a6c7731a99935bf686edaf21ad91f0c)
192
+ * Size: 2,061 evaluation samples
193
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
194
+ * Approximate statistics based on the first 1000 samples:
195
+ | | query | doc | label |
196
+ |:--------|:-------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:---------------------------------------------------------------|
197
+ | type | string | string | float |
198
+ | details | <ul><li>min: 31 characters</li><li>mean: 124.23 characters</li><li>max: 319 characters</li></ul> | <ul><li>min: 9 characters</li><li>mean: 138.92 characters</li><li>max: 851 characters</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.18</li><li>max: 1.0</li></ul> |
199
+ * Samples:
200
+ | query | doc | label |
201
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------|:-----------------|
202
+ | <code>Within a decade, certain kinds of branching and plate coral could be extinct, reef scientists say, along with a variety of small fish that rely on them for protection from predators.</code> | <code>They are important apex predators feeding on a wide variety of smaller fish and cephalopods.</code> | <code>1.0</code> |
203
+ | <code>Armed conflicts over resources may become a reality, and have the potential to escalate into nuclear war.</code> | <code>The length of the track is 1,000 meters.</code> | <code>0.0</code> |
204
+ | <code>The natural cycle adds and removes CO2 to keep a balance; humans add extra CO2 without removing any.</code> | <code>Their post office was established in February 1882 and closed in December 1942</code> | <code>0.0</code> |
205
+ * Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
206
+ ```json
207
+ {
208
+ "activation_fn": "torch.nn.modules.linear.Identity",
209
+ "pos_weight": null
210
+ }
211
+ ```
212
+
213
+ ### Training Hyperparameters
214
+ #### Non-Default Hyperparameters
215
+
216
+ - `eval_strategy`: steps
217
+ - `per_device_train_batch_size`: 16
218
+ - `per_device_eval_batch_size`: 32
219
+ - `learning_rate`: 2e-05
220
+ - `warmup_ratio`: 0.1
221
+ - `load_best_model_at_end`: True
222
+
223
+ #### All Hyperparameters
224
+ <details><summary>Click to expand</summary>
225
+
226
+ - `overwrite_output_dir`: False
227
+ - `do_predict`: False
228
+ - `eval_strategy`: steps
229
+ - `prediction_loss_only`: True
230
+ - `per_device_train_batch_size`: 16
231
+ - `per_device_eval_batch_size`: 32
232
+ - `per_gpu_train_batch_size`: None
233
+ - `per_gpu_eval_batch_size`: None
234
+ - `gradient_accumulation_steps`: 1
235
+ - `eval_accumulation_steps`: None
236
+ - `torch_empty_cache_steps`: None
237
+ - `learning_rate`: 2e-05
238
+ - `weight_decay`: 0.0
239
+ - `adam_beta1`: 0.9
240
+ - `adam_beta2`: 0.999
241
+ - `adam_epsilon`: 1e-08
242
+ - `max_grad_norm`: 1.0
243
+ - `num_train_epochs`: 3
244
+ - `max_steps`: -1
245
+ - `lr_scheduler_type`: linear
246
+ - `lr_scheduler_kwargs`: {}
247
+ - `warmup_ratio`: 0.1
248
+ - `warmup_steps`: 0
249
+ - `log_level`: passive
250
+ - `log_level_replica`: warning
251
+ - `log_on_each_node`: True
252
+ - `logging_nan_inf_filter`: True
253
+ - `save_safetensors`: True
254
+ - `save_on_each_node`: False
255
+ - `save_only_model`: False
256
+ - `restore_callback_states_from_checkpoint`: False
257
+ - `no_cuda`: False
258
+ - `use_cpu`: False
259
+ - `use_mps_device`: False
260
+ - `seed`: 42
261
+ - `data_seed`: None
262
+ - `jit_mode_eval`: False
263
+ - `use_ipex`: False
264
+ - `bf16`: False
265
+ - `fp16`: False
266
+ - `fp16_opt_level`: O1
267
+ - `half_precision_backend`: auto
268
+ - `bf16_full_eval`: False
269
+ - `fp16_full_eval`: False
270
+ - `tf32`: None
271
+ - `local_rank`: 0
272
+ - `ddp_backend`: None
273
+ - `tpu_num_cores`: None
274
+ - `tpu_metrics_debug`: False
275
+ - `debug`: []
276
+ - `dataloader_drop_last`: False
277
+ - `dataloader_num_workers`: 0
278
+ - `dataloader_prefetch_factor`: None
279
+ - `past_index`: -1
280
+ - `disable_tqdm`: False
281
+ - `remove_unused_columns`: True
282
+ - `label_names`: None
283
+ - `load_best_model_at_end`: True
284
+ - `ignore_data_skip`: False
285
+ - `fsdp`: []
286
+ - `fsdp_min_num_params`: 0
287
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
288
+ - `tp_size`: 0
289
+ - `fsdp_transformer_layer_cls_to_wrap`: None
290
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
291
+ - `deepspeed`: None
292
+ - `label_smoothing_factor`: 0.0
293
+ - `optim`: adamw_torch
294
+ - `optim_args`: None
295
+ - `adafactor`: False
296
+ - `group_by_length`: False
297
+ - `length_column_name`: length
298
+ - `ddp_find_unused_parameters`: None
299
+ - `ddp_bucket_cap_mb`: None
300
+ - `ddp_broadcast_buffers`: False
301
+ - `dataloader_pin_memory`: True
302
+ - `dataloader_persistent_workers`: False
303
+ - `skip_memory_metrics`: True
304
+ - `use_legacy_prediction_loop`: False
305
+ - `push_to_hub`: False
306
+ - `resume_from_checkpoint`: None
307
+ - `hub_model_id`: None
308
+ - `hub_strategy`: every_save
309
+ - `hub_private_repo`: None
310
+ - `hub_always_push`: False
311
+ - `gradient_checkpointing`: False
312
+ - `gradient_checkpointing_kwargs`: None
313
+ - `include_inputs_for_metrics`: False
314
+ - `include_for_metrics`: []
315
+ - `eval_do_concat_batches`: True
316
+ - `fp16_backend`: auto
317
+ - `push_to_hub_model_id`: None
318
+ - `push_to_hub_organization`: None
319
+ - `mp_parameters`:
320
+ - `auto_find_batch_size`: False
321
+ - `full_determinism`: False
322
+ - `torchdynamo`: None
323
+ - `ray_scope`: last
324
+ - `ddp_timeout`: 1800
325
+ - `torch_compile`: False
326
+ - `torch_compile_backend`: None
327
+ - `torch_compile_mode`: None
328
+ - `include_tokens_per_second`: False
329
+ - `include_num_input_tokens_seen`: False
330
+ - `neftune_noise_alpha`: None
331
+ - `optim_target_modules`: None
332
+ - `batch_eval_metrics`: False
333
+ - `eval_on_start`: False
334
+ - `use_liger_kernel`: False
335
+ - `eval_use_gather_object`: False
336
+ - `average_tokens_across_devices`: False
337
+ - `prompts`: None
338
+ - `batch_sampler`: batch_sampler
339
+ - `multi_dataset_batch_sampler`: proportional
340
+
341
+ </details>
342
+
343
+ ### Training Logs
344
+ | Epoch | Step | Training Loss | Validation Loss | climate-rerank-multineg_ndcg@10 |
345
+ |:----------:|:--------:|:-------------:|:---------------:|:-------------------------------:|
346
+ | 0.0862 | 100 | 0.6482 | - | - |
347
+ | 0.1724 | 200 | 0.513 | - | - |
348
+ | 0.2586 | 300 | 0.4079 | - | - |
349
+ | 0.3448 | 400 | 0.3655 | - | - |
350
+ | 0.4310 | 500 | 0.3771 | 0.3597 | 0.9309 |
351
+ | 0.5172 | 600 | 0.336 | - | - |
352
+ | 0.6034 | 700 | 0.3322 | - | - |
353
+ | 0.6897 | 800 | 0.3337 | - | - |
354
+ | 0.7759 | 900 | 0.3342 | - | - |
355
+ | **0.8621** | **1000** | **0.3437** | **0.3364** | **0.9378** |
356
+ | 0.9483 | 1100 | 0.3341 | - | - |
357
+ | 1.0345 | 1200 | 0.3193 | - | - |
358
+ | 1.1207 | 1300 | 0.286 | - | - |
359
+ | 1.2069 | 1400 | 0.2883 | - | - |
360
+ | 1.2931 | 1500 | 0.2786 | 0.3290 | 0.9441 |
361
+ | 1.3793 | 1600 | 0.3022 | - | - |
362
+ | 1.4655 | 1700 | 0.2828 | - | - |
363
+ | 1.5517 | 1800 | 0.2925 | - | - |
364
+ | 1.6379 | 1900 | 0.2827 | - | - |
365
+ | 1.7241 | 2000 | 0.291 | 0.3426 | 0.9463 |
366
+ | 1.8103 | 2100 | 0.2947 | - | - |
367
+ | 1.8966 | 2200 | 0.2918 | - | - |
368
+ | 1.9828 | 2300 | 0.2868 | - | - |
369
+ | 2.0690 | 2400 | 0.2633 | - | - |
370
+ | 2.1552 | 2500 | 0.2524 | 0.3324 | 0.9521 |
371
+ | 2.2414 | 2600 | 0.2412 | - | - |
372
+ | 2.3276 | 2700 | 0.2796 | - | - |
373
+ | 2.4138 | 2800 | 0.2374 | - | - |
374
+ | 2.5 | 2900 | 0.2243 | - | - |
375
+ | 2.5862 | 3000 | 0.2451 | 0.3459 | 0.9533 |
376
+ | 2.6724 | 3100 | 0.2388 | - | - |
377
+ | 2.7586 | 3200 | 0.2447 | - | - |
378
+ | 2.8448 | 3300 | 0.2548 | - | - |
379
+ | 2.9310 | 3400 | 0.2487 | - | - |
380
+
381
+ * The bold row denotes the saved checkpoint.
382
+
383
+ ### Framework Versions
384
+ - Python: 3.11.12
385
+ - Sentence Transformers: 4.1.0
386
+ - Transformers: 4.51.3
387
+ - PyTorch: 2.6.0+cu124
388
+ - Accelerate: 1.6.0
389
+ - Datasets: 3.6.0
390
+ - Tokenizers: 0.21.1
391
+
392
+ ## Citation
393
+
394
+ ### BibTeX
395
+
396
+ #### Sentence Transformers
397
+ ```bibtex
398
+ @inproceedings{reimers-2019-sentence-bert,
399
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
400
+ author = "Reimers, Nils and Gurevych, Iryna",
401
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
402
+ month = "11",
403
+ year = "2019",
404
+ publisher = "Association for Computational Linguistics",
405
+ url = "https://arxiv.org/abs/1908.10084",
406
+ }
407
+ ```
408
+
409
+ <!--
410
+ ## Glossary
411
+
412
+ *Clearly define terms in order to be accessible across audiences.*
413
+ -->
414
+
415
+ <!--
416
+ ## Model Card Authors
417
+
418
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Contact
423
+
424
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
425
+ -->
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 384,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 1536,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 6,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "sentence_transformers": {
27
+ "activation_fn": "torch.nn.modules.linear.Identity",
28
+ "version": "4.1.0"
29
+ },
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.51.3",
32
+ "type_vocab_size": 2,
33
+ "use_cache": true,
34
+ "vocab_size": 30522
35
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65efb33c12979f8f394cfdbb78de1951bb4e748d317d128d05b93dcd3255c631
3
+ size 90866412
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 512,
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff