CernovaAI commited on
Commit
1692f1b
·
verified ·
1 Parent(s): 14cc005

Upload 3 files

Browse files
Files changed (4) hide show
  1. .gitattributes +2 -0
  2. CANet-v1.4.py +67 -0
  3. chart-7.png +3 -0
  4. chart-8.png +3 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ chart-7.png filter=lfs diff=lfs merge=lfs -text
37
+ chart-8.png filter=lfs diff=lfs merge=lfs -text
CANet-v1.4.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import matplotlib.pyplot as plt
4
+ import tensorflow as tf
5
+ from tensorflow import keras
6
+ from tensorflow.keras import layers
7
+ from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
8
+
9
+
10
+ veriyolu = ""
11
+
12
+ image_size = (150, 150)
13
+ batch_size = 32
14
+
15
+ train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.1)
16
+ train_generator = train_datagen.flow_from_directory(
17
+ veriyolu,
18
+ target_size=image_size,
19
+ batch_size=batch_size,
20
+ class_mode='categorical',
21
+ subset='training'
22
+ )
23
+ validation_generator = train_datagen.flow_from_directory(
24
+ veriyolu,
25
+ target_size=image_size,
26
+ batch_size=batch_size,
27
+ class_mode='categorical',
28
+ subset='validation'
29
+ )
30
+
31
+
32
+ model = keras.Sequential([
33
+ layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
34
+ layers.MaxPooling2D(2, 2),
35
+ layers.Conv2D(64, (3, 3), activation='relu'),
36
+ layers.MaxPooling2D(2, 2),
37
+ layers.Conv2D(128, (3, 3), activation='relu'),
38
+ layers.MaxPooling2D(2, 2),
39
+ layers.Flatten(),
40
+ layers.Dense(512, activation='relu'),
41
+ layers.Dense(len(train_generator.class_indices), activation='softmax')
42
+ ])
43
+
44
+ model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
45
+
46
+
47
+ model.fit(train_generator, validation_data=validation_generator, epochs=10)
48
+
49
+
50
+ model.save("model5.h5")
51
+
52
+
53
+ def guess(image_path, model, class_indices):
54
+ img = load_img(image_path, target_size=(150, 150))
55
+ img_array = img_to_array(img) / 255.0
56
+ img_array = np.expand_dims(img_array, axis=0)
57
+
58
+ prediction = model.predict(img_array)
59
+ predicted_class = np.argmax(prediction)
60
+ class_labels = {v: k for k, v in class_indices.items()}
61
+ predicted_label = class_labels[predicted_class]
62
+
63
+ plt.imshow(img)
64
+ plt.title(f"model_guess: {predicted_label}")
65
+ plt.axis("off")
66
+ plt.show()
67
+
chart-7.png ADDED

Git LFS Details

  • SHA256: 042211f0d240b44383b8a567e8215002725e9546e4003b8496f61bc270dee0d2
  • Pointer size: 131 Bytes
  • Size of remote file: 101 kB
chart-8.png ADDED

Git LFS Details

  • SHA256: cbaea00fc7200a1c33e3abfe33687f63736f486fd5f5e53cd3418c11278c20ea
  • Pointer size: 131 Bytes
  • Size of remote file: 109 kB