Upload 3 files
Browse files- .gitattributes +2 -0
- CANet-v1.4.py +67 -0
- chart-7.png +3 -0
- chart-8.png +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
chart-7.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
chart-8.png filter=lfs diff=lfs merge=lfs -text
|
CANet-v1.4.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
from tensorflow import keras
|
| 6 |
+
from tensorflow.keras import layers
|
| 7 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_to_array
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
veriyolu = ""
|
| 11 |
+
|
| 12 |
+
image_size = (150, 150)
|
| 13 |
+
batch_size = 32
|
| 14 |
+
|
| 15 |
+
train_datagen = ImageDataGenerator(rescale=1./255, validation_split=0.1)
|
| 16 |
+
train_generator = train_datagen.flow_from_directory(
|
| 17 |
+
veriyolu,
|
| 18 |
+
target_size=image_size,
|
| 19 |
+
batch_size=batch_size,
|
| 20 |
+
class_mode='categorical',
|
| 21 |
+
subset='training'
|
| 22 |
+
)
|
| 23 |
+
validation_generator = train_datagen.flow_from_directory(
|
| 24 |
+
veriyolu,
|
| 25 |
+
target_size=image_size,
|
| 26 |
+
batch_size=batch_size,
|
| 27 |
+
class_mode='categorical',
|
| 28 |
+
subset='validation'
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
model = keras.Sequential([
|
| 33 |
+
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(150, 150, 3)),
|
| 34 |
+
layers.MaxPooling2D(2, 2),
|
| 35 |
+
layers.Conv2D(64, (3, 3), activation='relu'),
|
| 36 |
+
layers.MaxPooling2D(2, 2),
|
| 37 |
+
layers.Conv2D(128, (3, 3), activation='relu'),
|
| 38 |
+
layers.MaxPooling2D(2, 2),
|
| 39 |
+
layers.Flatten(),
|
| 40 |
+
layers.Dense(512, activation='relu'),
|
| 41 |
+
layers.Dense(len(train_generator.class_indices), activation='softmax')
|
| 42 |
+
])
|
| 43 |
+
|
| 44 |
+
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
model.fit(train_generator, validation_data=validation_generator, epochs=10)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
model.save("model5.h5")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def guess(image_path, model, class_indices):
|
| 54 |
+
img = load_img(image_path, target_size=(150, 150))
|
| 55 |
+
img_array = img_to_array(img) / 255.0
|
| 56 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 57 |
+
|
| 58 |
+
prediction = model.predict(img_array)
|
| 59 |
+
predicted_class = np.argmax(prediction)
|
| 60 |
+
class_labels = {v: k for k, v in class_indices.items()}
|
| 61 |
+
predicted_label = class_labels[predicted_class]
|
| 62 |
+
|
| 63 |
+
plt.imshow(img)
|
| 64 |
+
plt.title(f"model_guess: {predicted_label}")
|
| 65 |
+
plt.axis("off")
|
| 66 |
+
plt.show()
|
| 67 |
+
|
chart-7.png
ADDED
|
Git LFS Details
|
chart-8.png
ADDED
|
Git LFS Details
|