Add CryoFM2 models
Browse filesUpload CryoFM2 model checkpoints and configurations:
- cryofm2-pretrain: Unconditional pretrained model
- cryofm2-emhancer: Fine-tuned model for EMhancer-style enhancement
- cryofm2-emready: Fine-tuned model for EMReady-style enhancement
- .gitattributes +3 -0
- README.md +269 -3
- assets/cryofm2_arch-finetune.jpg +3 -0
- assets/cryofm2_arch-pretrain.jpg +3 -0
- assets/cryofm2_overview.jpg +3 -0
- cryofm2-emhancer/config.yaml +64 -0
- cryofm2-emhancer/model.safetensors +3 -0
- cryofm2-emready/config.yaml +64 -0
- cryofm2-emready/model.safetensors +3 -0
- cryofm2-pretrain/config.yaml +61 -0
- cryofm2-pretrain/model.safetensors +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/cryofm2_arch-finetune.jpg filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
assets/cryofm2_arch-pretrain.jpg filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
assets/cryofm2_overview.jpg filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,269 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- cryo-em
|
| 5 |
+
- flow-matching
|
| 6 |
+
- 3d-density-maps
|
| 7 |
+
- foundation-model
|
| 8 |
+
- conditional-sampling
|
| 9 |
+
---
|
| 10 |
+
|
| 11 |
+
# CryoFM2: A Generative Foundation Model for Cryo-EM Densities
|
| 12 |
+
|
| 13 |
+
<div align="center">
|
| 14 |
+
|
| 15 |
+
[](https://github.com/ByteDance-Seed/cryofm)
|
| 16 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 17 |
+
|
| 18 |
+
</div>
|
| 19 |
+
|
| 20 |
+
<div align="center">
|
| 21 |
+
<img src="./assets/cryofm2_overview.jpg" alt="CryoFM2 Overview" style="max-width: 100%; height: auto; width: 800px;"/>
|
| 22 |
+
</div>
|
| 23 |
+
|
| 24 |
+
## Overview
|
| 25 |
+
|
| 26 |
+
**CryoFM2** is a flow-based generative foundation model for cryo-EM density maps.
|
| 27 |
+
It is pretrained on curated EMDB half maps to learn general priors of high-quality cryo-EM densities and can be fine-tuned for downstream tasks.
|
| 28 |
+
|
| 29 |
+
The model learns a continuous mapping from a simple Gaussian distribution to the complex distribution of cryo-EM densities, enabling stable generation and flexible adaptation. CryoFM2 can also act as a **Bayesian prior**, integrating naturally with task-specific likelihoods to support applications such as anisotropy-aware refinement, non-uniform reconstruction, and controlled density modification.
|
| 30 |
+
|
| 31 |
+
## Model Details
|
| 32 |
+
|
| 33 |
+
CryoFM2 is pretrained on curated EMDB half maps to learn general priors of high-quality cryo-EM densities. The model can be fine-tuned for various downstream tasks such as density map enhancement and post-processing.
|
| 34 |
+
|
| 35 |
+
**Pre-training Architecture:**
|
| 36 |
+
|
| 37 |
+
<div align="center">
|
| 38 |
+
<img src="./assets/cryofm2_arch-pretrain.jpg" alt="CryoFM2 architecture for pre-training." style="max-width: 100%; height: auto; width: 800px;"/>
|
| 39 |
+
</div>
|
| 40 |
+
|
| 41 |
+
**Fine-tuning Architecture (for EMhancer/EMReady style post-processing):**
|
| 42 |
+
|
| 43 |
+
<div align="center">
|
| 44 |
+
<img src="./assets/cryofm2_arch-finetune.jpg" alt="CryoFM2 architecture for fine-tuning." style="max-width: 100%; height: auto; width: 800px;"/>
|
| 45 |
+
</div>
|
| 46 |
+
|
| 47 |
+
### Architecture
|
| 48 |
+
- **Architecture Type**: 3D UNet
|
| 49 |
+
- **Input Size**: 64×64×64 voxels
|
| 50 |
+
- **Input Channels**: 2 for pre-trained model, 3 for fine-tuned model
|
| 51 |
+
- **Output Channels**: 1
|
| 52 |
+
- **Down Blocks**: DownBlock3D, DownBlock3D, AttnDownBlock3D, AttnDownBlock3D
|
| 53 |
+
- **Up Blocks**: AttnUpBlock3D, AttnUpBlock3D, UpBlock3D, UpBlock3D
|
| 54 |
+
- **Block Output Channels**: (64, 128, 256, 512)
|
| 55 |
+
- **Layers per Block**: 2
|
| 56 |
+
- **Attention Head Dimension**: 8
|
| 57 |
+
- **Normalization**: GroupNorm (32 groups)
|
| 58 |
+
- **Activation**: SiLU
|
| 59 |
+
- **Time Embedding**: Positional encoding
|
| 60 |
+
|
| 61 |
+
### Model Variants
|
| 62 |
+
|
| 63 |
+
1. **cryofm2-pretrain**: Unconditional pretrained model for general density map generation
|
| 64 |
+
2. **cryofm2-emhancer**: Fine-tuned model for density map enhancement (EMhancer style)
|
| 65 |
+
3. **cryofm2-emready**: Fine-tuned model for density map enhancement (EMReady style)
|
| 66 |
+
|
| 67 |
+
## Play with CryoFM2
|
| 68 |
+
|
| 69 |
+
### Unconditional Generation (Explore Training Data Distribution)
|
| 70 |
+
|
| 71 |
+
Generate samples from the pretrained model to explore the learned data distribution:
|
| 72 |
+
|
| 73 |
+
**Pretrained Model:**
|
| 74 |
+
```python
|
| 75 |
+
import torch
|
| 76 |
+
from mmengine import Config
|
| 77 |
+
|
| 78 |
+
from cryofm.core.utils.mrc_io import save_mrc
|
| 79 |
+
from cryofm.core.utils.sampling_fm import sample_from_fm
|
| 80 |
+
from cryofm.projects.cryofm2.lit_modules import CryoFM2Uncond
|
| 81 |
+
|
| 82 |
+
# Update the path to your model directory
|
| 83 |
+
model_dir = "path/to/cryofm-v2/cryofm2-pretrain"
|
| 84 |
+
cfg = Config.fromfile(f"{model_dir}/config.yaml")
|
| 85 |
+
lit_model = CryoFM2Uncond.load_from_safetensors(f"{model_dir}/model.safetensors", cfg=cfg)
|
| 86 |
+
|
| 87 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 88 |
+
|
| 89 |
+
lit_model = lit_model.to(device)
|
| 90 |
+
lit_model.eval()
|
| 91 |
+
def v_xt_t(_xt, _t):
|
| 92 |
+
return lit_model(_xt, _t)
|
| 93 |
+
|
| 94 |
+
# Enable bfloat16 for faster inference if your GPU supports it
|
| 95 |
+
with torch.no_grad(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 96 |
+
out = sample_from_fm(
|
| 97 |
+
v_xt_t,
|
| 98 |
+
lit_model.noise_scheduler,
|
| 99 |
+
method="euler",
|
| 100 |
+
num_steps=200,
|
| 101 |
+
num_samples=3,
|
| 102 |
+
device=lit_model.device,
|
| 103 |
+
side_shape=64
|
| 104 |
+
)
|
| 105 |
+
# Apply normalization if configured
|
| 106 |
+
if hasattr(lit_model.cfg, "z_scale") and lit_model.cfg.z_scale.mean is not None:
|
| 107 |
+
out = out * lit_model.cfg.z_scale.std + lit_model.cfg.z_scale.mean
|
| 108 |
+
|
| 109 |
+
# Save generated samples
|
| 110 |
+
for i in range(3):
|
| 111 |
+
save_mrc(out[i].float().cpu().numpy(), f"sample-{i}.mrc", voxel_size=1.5)
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
**Fine-tuned Models (EMhancer/EMReady):**
|
| 115 |
+
```python
|
| 116 |
+
import torch
|
| 117 |
+
from mmengine import Config
|
| 118 |
+
|
| 119 |
+
from cryofm.core.utils.mrc_io import save_mrc
|
| 120 |
+
from cryofm.core.utils.sampling_fm import sample_from_fm
|
| 121 |
+
from cryofm.projects.cryofm2.lit_modules import CryoFM2Cond
|
| 122 |
+
|
| 123 |
+
# Choose style: "emhancer" or "emready"
|
| 124 |
+
style = "emhancer"
|
| 125 |
+
model_dir = f"path/to/cryofm-v2/cryofm2-{style}"
|
| 126 |
+
cfg = Config.fromfile(f"{model_dir}/config.yaml")
|
| 127 |
+
lit_model = CryoFM2Cond.load_from_safetensors(f"{model_dir}/model.safetensors", cfg=cfg)
|
| 128 |
+
output_tag = 1 if style == "emhancer" else 0
|
| 129 |
+
|
| 130 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 131 |
+
|
| 132 |
+
lit_model = lit_model.to(device)
|
| 133 |
+
lit_model.eval()
|
| 134 |
+
def v_xt_t(_xt, _t):
|
| 135 |
+
bs = _xt.shape[0]
|
| 136 |
+
unconditional_generation_conds = {
|
| 137 |
+
"input_cond": None,
|
| 138 |
+
"output_cond": torch.tensor([output_tag] * bs).to(device),
|
| 139 |
+
"vol_cond": None, # dimension should be [bs, d, h, w]
|
| 140 |
+
}
|
| 141 |
+
return lit_model(_xt, _t, generation_conds=unconditional_generation_conds)
|
| 142 |
+
|
| 143 |
+
# Enable bfloat16 for faster inference if your GPU supports it
|
| 144 |
+
with torch.no_grad(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 145 |
+
out = sample_from_fm(
|
| 146 |
+
v_xt_t,
|
| 147 |
+
lit_model.noise_scheduler,
|
| 148 |
+
method="euler",
|
| 149 |
+
num_steps=200,
|
| 150 |
+
num_samples=3,
|
| 151 |
+
device=lit_model.device,
|
| 152 |
+
side_shape=64
|
| 153 |
+
)
|
| 154 |
+
# Apply normalization if configured
|
| 155 |
+
if hasattr(lit_model.cfg, "z_scale") and lit_model.cfg.z_scale.mean is not None:
|
| 156 |
+
out = out * lit_model.cfg.z_scale.std + lit_model.cfg.z_scale.mean
|
| 157 |
+
|
| 158 |
+
# Save generated samples
|
| 159 |
+
for i in range(3):
|
| 160 |
+
save_mrc(out[i].float().cpu().numpy(), f"{style}-sample-{i}.mrc", voxel_size=1.5)
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
### Density Map Modification
|
| 164 |
+
|
| 165 |
+
CryoFM2 supports various density map modification operations using the pretrained model as a Bayesian prior. Supported operators include:
|
| 166 |
+
|
| 167 |
+
- **denoise**: Remove noise from density maps
|
| 168 |
+
- **inpaint**: Fill missing regions (e.g., missing wedge)
|
| 169 |
+
- **denoise inpaint**: Combined denoising and inpainting
|
| 170 |
+
- **non-uniform weight**: Apply non-uniform weighting during reconstruction
|
| 171 |
+
|
| 172 |
+
**Basic Usage:**
|
| 173 |
+
|
| 174 |
+
```bash
|
| 175 |
+
python -m cryofm.projects.cryofm2.uncond_sampling \
|
| 176 |
+
-i1 half_map_1.mrc \
|
| 177 |
+
-i2 half_map_2.mrc \
|
| 178 |
+
-o ./output \
|
| 179 |
+
--model-dir path/to/cryofm-v2/cryofm2-pretrain \
|
| 180 |
+
--op denoise \
|
| 181 |
+
--norm-grad \
|
| 182 |
+
--use-lamb-w
|
| 183 |
+
```
|
| 184 |
+
|
| 185 |
+
**For inpainting tasks**, you need to provide a RELION starfile path:
|
| 186 |
+
|
| 187 |
+
```bash
|
| 188 |
+
python -m cryofm.projects.cryofm2.uncond_sampling \
|
| 189 |
+
-i1 half_map_1.mrc \
|
| 190 |
+
-i2 half_map_2.mrc \
|
| 191 |
+
-o ./output \
|
| 192 |
+
--model-dir path/to/cryofm-v2/cryofm2-pretrain \
|
| 193 |
+
--op inpaint \
|
| 194 |
+
--data-starfile-path path/to/relion_data.star \
|
| 195 |
+
--norm-grad \
|
| 196 |
+
--use-lamb-w
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
### Density Map Post-Processing
|
| 200 |
+
|
| 201 |
+
CryoFM2 provides fine-tuned models for density map enhancement in different styles, similar to EMhancer and EMReady.
|
| 202 |
+
|
| 203 |
+
#### EMhancer Style Enhancement
|
| 204 |
+
|
| 205 |
+
```bash
|
| 206 |
+
python -m cryofm.projects.cryofm2.cond_sampling \
|
| 207 |
+
-i input_map.mrc \
|
| 208 |
+
-o ./output_emhancer \
|
| 209 |
+
--model-dir path/to/cryofm-v2/cryofm2-emhancer \
|
| 210 |
+
--output-tag 1
|
| 211 |
+
```
|
| 212 |
+
|
| 213 |
+
#### EMReady Style Enhancement
|
| 214 |
+
|
| 215 |
+
```bash
|
| 216 |
+
python -m cryofm.projects.cryofm2.cond_sampling \
|
| 217 |
+
-i input_map.mrc \
|
| 218 |
+
-o ./output_emready \
|
| 219 |
+
--model-dir path/to/cryofm-v2/cryofm2-emready \
|
| 220 |
+
--output-tag 0 \
|
| 221 |
+
--cfg-weight 0.5
|
| 222 |
+
```
|
| 223 |
+
|
| 224 |
+
**Parameters:**
|
| 225 |
+
- `-i`: Input density map file (MRC format)
|
| 226 |
+
- `-o`: Output directory
|
| 227 |
+
- `--model-dir`: Path to the model directory containing `config.yaml` and `model.safetensors`
|
| 228 |
+
- `--output-tag`: Style tag (1 for EMhancer, 0 for EMReady)
|
| 229 |
+
- `--cfg-weight`: Classifier-free guidance weight (optional, default varies by model)
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
## Performance Tips
|
| 233 |
+
|
| 234 |
+
- **Multi-GPU Inference**: Use `accelerate launch` for faster inference on multiple GPUs:
|
| 235 |
+
```bash
|
| 236 |
+
NCCL_DEBUG=ERROR accelerate launch --num_processes=${NUM_GPUS} --main_process_port=8881 \
|
| 237 |
+
python -m cryofm.projects.cryofm2.cond_sampling ...
|
| 238 |
+
```
|
| 239 |
+
- **Mixed Precision**: Use `--bf16` flag when available to reduce memory usage and speed up inference.
|
| 240 |
+
- **Batch Processing**: Adjust batch size based on your GPU memory capacity.
|
| 241 |
+
|
| 242 |
+
## Limitations
|
| 243 |
+
|
| 244 |
+
- Input size is fixed at 64×64×64 voxels
|
| 245 |
+
- Model performance may vary depending on the input density map quality
|
| 246 |
+
- Fine-tuned models are optimized for specific enhancement styles
|
| 247 |
+
|
| 248 |
+
## Ethical Considerations
|
| 249 |
+
|
| 250 |
+
This model is intended for scientific research and structural biology applications. Users should:
|
| 251 |
+
- Ensure proper attribution when using generated structures
|
| 252 |
+
- Validate generated structures through experimental verification
|
| 253 |
+
- Be aware of potential biases in the training data
|
| 254 |
+
- Use the model responsibly and in accordance with scientific best practices
|
| 255 |
+
|
| 256 |
+
## Citation
|
| 257 |
+
|
| 258 |
+
TBA
|
| 259 |
+
|
| 260 |
+
## License
|
| 261 |
+
|
| 262 |
+
This model is released under the Apache 2.0 License. See the [LICENSE](https://github.com/ByteDance-Seed/cryofm/blob/main/LICENSE) file for details.
|
| 263 |
+
|
| 264 |
+
## Acknowledgments
|
| 265 |
+
|
| 266 |
+
This work is developed by the ByteDance Seed Team. For more information, visit:
|
| 267 |
+
- [Project Repository](https://github.com/ByteDance-Seed/cryofm)
|
| 268 |
+
- [ByteDance Seed Team](https://seed.bytedance.com/)
|
| 269 |
+
|
assets/cryofm2_arch-finetune.jpg
ADDED
|
Git LFS Details
|
assets/cryofm2_arch-pretrain.jpg
ADDED
|
Git LFS Details
|
assets/cryofm2_overview.jpg
ADDED
|
Git LFS Details
|
cryofm2-emhancer/config.yaml
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ckpt_path: null
|
| 2 |
+
ddpm:
|
| 3 |
+
cond_drop_threshold: 0.1
|
| 4 |
+
prediction_type: v_prediction
|
| 5 |
+
exp_name: cond_model_emhancer
|
| 6 |
+
inference:
|
| 7 |
+
batch_size: 16
|
| 8 |
+
patch_overlap: 0
|
| 9 |
+
is_debug: false
|
| 10 |
+
keep_last_k: null
|
| 11 |
+
mode: train
|
| 12 |
+
model:
|
| 13 |
+
act_fn: silu
|
| 14 |
+
attention_head_dim: 8
|
| 15 |
+
attn_norm_num_groups: null
|
| 16 |
+
block_out_channels: !!python/tuple
|
| 17 |
+
- 64
|
| 18 |
+
- 128
|
| 19 |
+
- 256
|
| 20 |
+
- 512
|
| 21 |
+
class_embed_type: null
|
| 22 |
+
down_block_types: !!python/tuple
|
| 23 |
+
- DownBlock3D
|
| 24 |
+
- DownBlock3D
|
| 25 |
+
- AttnDownBlock3D
|
| 26 |
+
- AttnDownBlock3D
|
| 27 |
+
downsample_padding: 1
|
| 28 |
+
downsample_type: conv
|
| 29 |
+
dropout: 0.0
|
| 30 |
+
flip_sin_to_cos: true
|
| 31 |
+
freq_shift: 0
|
| 32 |
+
in_channels: 3
|
| 33 |
+
layers_per_block: 2
|
| 34 |
+
mid_block_scale_factor: 1
|
| 35 |
+
norm_eps: 1.0e-05
|
| 36 |
+
norm_num_groups: 32
|
| 37 |
+
num_class_embeds: 5
|
| 38 |
+
out_channels: 1
|
| 39 |
+
resnet_time_scale_shift: scale_shift
|
| 40 |
+
sample_size: 64
|
| 41 |
+
time_embedding_dim: null
|
| 42 |
+
time_embedding_type: positional
|
| 43 |
+
up_block_types: !!python/tuple
|
| 44 |
+
- AttnUpBlock3D
|
| 45 |
+
- AttnUpBlock3D
|
| 46 |
+
- UpBlock3D
|
| 47 |
+
- UpBlock3D
|
| 48 |
+
upsample_type: conv
|
| 49 |
+
model_type: unet
|
| 50 |
+
num_val_samples: 3
|
| 51 |
+
optimizer:
|
| 52 |
+
lr: 0.0001
|
| 53 |
+
warmup: 2000
|
| 54 |
+
patch_size: 64
|
| 55 |
+
process: fm
|
| 56 |
+
resume_path: null
|
| 57 |
+
seed: 42
|
| 58 |
+
selective_datasets: emhancer
|
| 59 |
+
timestep_sampling: uniform
|
| 60 |
+
work_dir: work_dirs/cond_model_emhancer
|
| 61 |
+
z_crop: null
|
| 62 |
+
z_scale:
|
| 63 |
+
mean: null
|
| 64 |
+
std: null
|
cryofm2-emhancer/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96576420fe03fc93088b40fdb1e7f785d100e6ed49833050c961670bdfaee163
|
| 3 |
+
size 672409268
|
cryofm2-emready/config.yaml
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ckpt_path: null
|
| 2 |
+
ddpm:
|
| 3 |
+
cond_drop_threshold: 0.1
|
| 4 |
+
prediction_type: v_prediction
|
| 5 |
+
exp_name: cond_model_emready
|
| 6 |
+
inference:
|
| 7 |
+
batch_size: 16
|
| 8 |
+
patch_overlap: 0
|
| 9 |
+
is_debug: false
|
| 10 |
+
keep_last_k: null
|
| 11 |
+
mode: train
|
| 12 |
+
model:
|
| 13 |
+
act_fn: silu
|
| 14 |
+
attention_head_dim: 8
|
| 15 |
+
attn_norm_num_groups: null
|
| 16 |
+
block_out_channels: !!python/tuple
|
| 17 |
+
- 64
|
| 18 |
+
- 128
|
| 19 |
+
- 256
|
| 20 |
+
- 512
|
| 21 |
+
class_embed_type: null
|
| 22 |
+
down_block_types: !!python/tuple
|
| 23 |
+
- DownBlock3D
|
| 24 |
+
- DownBlock3D
|
| 25 |
+
- AttnDownBlock3D
|
| 26 |
+
- AttnDownBlock3D
|
| 27 |
+
downsample_padding: 1
|
| 28 |
+
downsample_type: conv
|
| 29 |
+
dropout: 0.0
|
| 30 |
+
flip_sin_to_cos: true
|
| 31 |
+
freq_shift: 0
|
| 32 |
+
in_channels: 3
|
| 33 |
+
layers_per_block: 2
|
| 34 |
+
mid_block_scale_factor: 1
|
| 35 |
+
norm_eps: 1.0e-05
|
| 36 |
+
norm_num_groups: 32
|
| 37 |
+
num_class_embeds: 5
|
| 38 |
+
out_channels: 1
|
| 39 |
+
resnet_time_scale_shift: scale_shift
|
| 40 |
+
sample_size: 64
|
| 41 |
+
time_embedding_dim: null
|
| 42 |
+
time_embedding_type: positional
|
| 43 |
+
up_block_types: !!python/tuple
|
| 44 |
+
- AttnUpBlock3D
|
| 45 |
+
- AttnUpBlock3D
|
| 46 |
+
- UpBlock3D
|
| 47 |
+
- UpBlock3D
|
| 48 |
+
upsample_type: conv
|
| 49 |
+
model_type: unet
|
| 50 |
+
num_val_samples: 3
|
| 51 |
+
optimizer:
|
| 52 |
+
lr: 0.0001
|
| 53 |
+
warmup: 2000
|
| 54 |
+
patch_size: 64
|
| 55 |
+
process: fm
|
| 56 |
+
resume_path: null
|
| 57 |
+
seed: 42
|
| 58 |
+
selective_datasets: emready
|
| 59 |
+
timestep_sampling: uniform
|
| 60 |
+
work_dir: work_dirs/cond_model_emready
|
| 61 |
+
z_crop: null
|
| 62 |
+
z_scale:
|
| 63 |
+
mean: null
|
| 64 |
+
std: null
|
cryofm2-emready/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:77c1fa590eaee1906e8470d3659c981855a92fcf4e6a7817b48f0069cd6d2bca
|
| 3 |
+
size 672409268
|
cryofm2-pretrain/config.yaml
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
ckpt_path: null
|
| 2 |
+
ddpm:
|
| 3 |
+
cond_drop_threshold: 3
|
| 4 |
+
prediction_type: v_prediction
|
| 5 |
+
exp_name: uncond_model
|
| 6 |
+
inference:
|
| 7 |
+
batch_size: 16
|
| 8 |
+
patch_overlap: 0
|
| 9 |
+
is_debug: false
|
| 10 |
+
keep_last_k: null
|
| 11 |
+
mode: train
|
| 12 |
+
model:
|
| 13 |
+
act_fn: silu
|
| 14 |
+
attention_head_dim: 8
|
| 15 |
+
attn_norm_num_groups: null
|
| 16 |
+
block_out_channels: !!python/tuple
|
| 17 |
+
- 64
|
| 18 |
+
- 128
|
| 19 |
+
- 256
|
| 20 |
+
- 512
|
| 21 |
+
down_block_types: !!python/tuple
|
| 22 |
+
- DownBlock3D
|
| 23 |
+
- DownBlock3D
|
| 24 |
+
- AttnDownBlock3D
|
| 25 |
+
- AttnDownBlock3D
|
| 26 |
+
downsample_padding: 1
|
| 27 |
+
downsample_type: conv
|
| 28 |
+
dropout: 0.0
|
| 29 |
+
flip_sin_to_cos: true
|
| 30 |
+
freq_shift: 0
|
| 31 |
+
in_channels: 2
|
| 32 |
+
layers_per_block: 2
|
| 33 |
+
mid_block_scale_factor: 1
|
| 34 |
+
norm_eps: 1.0e-05
|
| 35 |
+
norm_num_groups: 32
|
| 36 |
+
out_channels: 1
|
| 37 |
+
resnet_time_scale_shift: scale_shift
|
| 38 |
+
sample_size: 64
|
| 39 |
+
time_embedding_dim: null
|
| 40 |
+
time_embedding_type: positional
|
| 41 |
+
up_block_types: !!python/tuple
|
| 42 |
+
- AttnUpBlock3D
|
| 43 |
+
- AttnUpBlock3D
|
| 44 |
+
- UpBlock3D
|
| 45 |
+
- UpBlock3D
|
| 46 |
+
upsample_type: conv
|
| 47 |
+
model_type: unet
|
| 48 |
+
num_val_samples: 3
|
| 49 |
+
optimizer:
|
| 50 |
+
lr: 0.0001
|
| 51 |
+
warmup: 2000
|
| 52 |
+
patch_size: 64
|
| 53 |
+
process: fm
|
| 54 |
+
resume_path: null
|
| 55 |
+
seed: 42
|
| 56 |
+
timestep_sampling: uniform
|
| 57 |
+
work_dir: work_dirs/uncond_model
|
| 58 |
+
z_crop: null
|
| 59 |
+
z_scale:
|
| 60 |
+
mean: null
|
| 61 |
+
std: null
|
cryofm2-pretrain/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f10dc552fceedae8a3c574e9b9d259de7d1f5047f4f2107d9309fae9512f413
|
| 3 |
+
size 672397148
|