Upload README.md with huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
- lug
|
| 5 |
+
tags:
|
| 6 |
+
- llama-3.1
|
| 7 |
+
- gemma-2b
|
| 8 |
+
- finetuned
|
| 9 |
+
- english-luganda
|
| 10 |
+
- translation
|
| 11 |
+
- peft
|
| 12 |
+
- qlora
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# final_model_8b_128
|
| 16 |
+
|
| 17 |
+
This model is finetuned for English-Luganda bidirectional translation tasks. It's trained using QLoRA (Quantized Low-Rank Adaptation) on the original LLaMA-3.1-8B model.
|
| 18 |
+
|
| 19 |
+
## Model Details
|
| 20 |
+
|
| 21 |
+
### Base Model Information
|
| 22 |
+
- Base model: unsloth/Meta-Llama-3.1-8B
|
| 23 |
+
- Model family: LLaMA-3.1-8B
|
| 24 |
+
- Type: Base
|
| 25 |
+
- Original model size: 8B parameters
|
| 26 |
+
|
| 27 |
+
### Training Configuration
|
| 28 |
+
- Training method: QLoRA (4-bit quantization)
|
| 29 |
+
- LoRA rank (r): 128
|
| 30 |
+
- LoRA alpha: 128
|
| 31 |
+
- Target modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
|
| 32 |
+
- LoRA dropout: 0
|
| 33 |
+
- Learning rate: 2e-5
|
| 34 |
+
- Batch size: 2
|
| 35 |
+
- Gradient accumulation steps: 4
|
| 36 |
+
- Max sequence length: 2048
|
| 37 |
+
- Weight decay: 0.01
|
| 38 |
+
- Training steps: 100,000
|
| 39 |
+
- Warmup steps: 1000
|
| 40 |
+
- Save interval: 10,000 steps
|
| 41 |
+
- Optimizer: AdamW (8-bit)
|
| 42 |
+
- LR scheduler: Cosine
|
| 43 |
+
- Mixed precision: bf16
|
| 44 |
+
- Gradient checkpointing: Enabled (unsloth)
|
| 45 |
+
|
| 46 |
+
### Dataset Information
|
| 47 |
+
- Training data: Parallel English-Luganda corpus
|
| 48 |
+
- Data sources:
|
| 49 |
+
- SALT dataset (salt-train-v1.4)
|
| 50 |
+
- Extracted parallel sentences
|
| 51 |
+
- Synthetic code-mixed data
|
| 52 |
+
- Bidirectional translation: Trained on both English→Luganda and Luganda→English
|
| 53 |
+
- Total training examples: Varies by direction
|
| 54 |
+
|
| 55 |
+
### Usage
|
| 56 |
+
This model uses an instruction-based prompt format:
|
| 57 |
+
```
|
| 58 |
+
Below is an instruction that describes a task,
|
| 59 |
+
paired with an input that provides further context.
|
| 60 |
+
Write a response that appropriately completes the request.
|
| 61 |
+
|
| 62 |
+
### Instruction:
|
| 63 |
+
Translate the following text to [target_lang]
|
| 64 |
+
|
| 65 |
+
### Input:
|
| 66 |
+
[input text]
|
| 67 |
+
|
| 68 |
+
### Response:
|
| 69 |
+
[translation]
|
| 70 |
+
```
|
| 71 |
+
|
| 72 |
+
## Training Infrastructure
|
| 73 |
+
- Trained using unsloth optimization library
|
| 74 |
+
- Hardware: Single A100 GPU
|
| 75 |
+
- Quantization: 4-bit training enabled
|
| 76 |
+
|
| 77 |
+
## Limitations
|
| 78 |
+
- The model is specialized for English-Luganda translation
|
| 79 |
+
- Performance may vary based on domain and complexity of text
|
| 80 |
+
- Limited to the context length of 128 tokens
|
| 81 |
+
|
| 82 |
+
## Citation and Contact
|
| 83 |
+
If you use this model, please cite:
|
| 84 |
+
- Original LLaMA-3.1 model by Meta AI
|
| 85 |
+
- QLoRA paper: Dettmers et al. (2023)
|
| 86 |
+
- unsloth optimization library
|