Map-NEO / train_neo.py
Austin207's picture
Upload folder using huggingface_hub
a683148 verified
# MAP-NEO Mini Training Script
# Optimized for 8GB VRAM with mixed precision, gradient accumulation, and checkpointing
import os
import math
import time
import json
from pathlib import Path
from dataclasses import dataclass
from typing import Optional
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR
from accelerate import Accelerator
from tqdm import tqdm
from model_neo import NeoMini, NeoMiniConfig
@dataclass
class TrainingConfig:
"""Training configuration optimized for 8GB VRAM"""
# Data
data_path: str = "data/tokens/packed_1024.txt"
seq_length: int = 1024
# Model
model_config_path: Optional[str] = None
# Training
batch_size: int = 1 # CHANGED: Back to 1 for speed (was 2)
gradient_accumulation_steps: int = 32 # CHANGED: Back to 32 (was 16)
max_steps: int = 150000
warmup_steps: int = 3750
# Resume training
resume_from_checkpoint: Optional[str] = "checkpoints/checkpoint_step_15000.pt" # ADDED: Resume from your checkpoint
# Optimization
learning_rate: float = 3e-4
weight_decay: float = 0.01
beta1: float = 0.9
beta2: float = 0.95
grad_clip: float = 1.0
# Memory optimization
mixed_precision: str = "bf16" # Use bfloat16 for RTX 5070
gradient_checkpointing: bool = True
# Logging and checkpointing
log_interval: int = 10
eval_interval: int = 500
save_interval: int = 7500
output_dir: str = "checkpoints"
# Hardware
compile_model: bool = False # Disable compilation for now (can cause issues on Windows)
class PackedDataset(Dataset):
"""Dataset for pre-tokenized and packed sequences"""
def __init__(self, data_path: str, seq_length: int = 1024):
self.data_path = Path(data_path)
self.seq_length = seq_length
# Load all sequences into memory (for small datasets)
print(f"Loading data from {data_path}...")
with open(self.data_path, 'r', encoding='utf-8') as f:
self.sequences = []
for line in f:
tokens = list(map(int, line.strip().split()))
if len(tokens) == seq_length:
self.sequences.append(tokens)
print(f"Loaded {len(self.sequences)} sequences of length {seq_length}")
def __len__(self):
return len(self.sequences)
def __getitem__(self, idx):
tokens = self.sequences[idx]
# Input: tokens[:-1], Target: tokens[1:]
input_ids = torch.tensor(tokens[:-1], dtype=torch.long)
targets = torch.tensor(tokens[1:], dtype=torch.long)
return input_ids, targets
def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, min_lr_ratio=0.1):
"""Cosine learning rate schedule with warmup"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return current_step / max(1, num_warmup_steps)
progress = (current_step - num_warmup_steps) / max(1, num_training_steps - num_warmup_steps)
return min_lr_ratio + (1 - min_lr_ratio) * 0.5 * (1 + math.cos(math.pi * progress))
return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
def compute_loss(logits, targets):
"""Compute cross-entropy loss"""
# Flatten for loss computation
logits_flat = logits.view(-1, logits.size(-1))
targets_flat = targets.view(-1)
loss = nn.functional.cross_entropy(logits_flat, targets_flat, ignore_index=-100)
return loss
def save_checkpoint(model, optimizer, scheduler, step, loss, config, checkpoint_dir):
"""Save training checkpoint"""
checkpoint_dir = Path(checkpoint_dir)
checkpoint_dir.mkdir(parents=True, exist_ok=True)
checkpoint = {
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'step': step,
'loss': loss,
'config': config.__dict__
}
# Save checkpoint
checkpoint_path = checkpoint_dir / f"checkpoint_step_{step}.pt"
torch.save(checkpoint, checkpoint_path)
# Save model config
if hasattr(model, 'config'):
config_path = checkpoint_dir / "model_config.json"
with open(config_path, 'w') as f:
json.dump(model.config.to_dict(), f, indent=2)
print(f"Checkpoint saved: {checkpoint_path}")
return checkpoint_path
def load_checkpoint(checkpoint_path, model, optimizer, scheduler):
"""ADDED: Load training checkpoint and resume"""
print(f"Loading checkpoint from {checkpoint_path}...")
checkpoint = torch.load(checkpoint_path, map_location='cpu')
# Load model state
model.load_state_dict(checkpoint['model_state_dict'])
# Load optimizer state
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# Load scheduler state
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
# Get training progress
start_step = checkpoint['step']
last_loss = checkpoint['loss']
print(f"โœ… Checkpoint loaded successfully!")
print(f" Resuming from step: {start_step}")
print(f" Last loss: {last_loss:.4f}")
return start_step, last_loss
def generate_sample(model, tokenizer, prompt="The future of AI", max_length=100, temperature=0.8):
"""Generate text sample for evaluation"""
model.eval()
device = next(model.parameters()).device
# Encode prompt
input_ids = tokenizer.encode(prompt, return_tensors="pt").to(device)
with torch.no_grad():
for _ in range(max_length):
# Forward pass
logits = model(input_ids)
next_token_logits = logits[0, -1, :] / temperature
# Sample next token
probs = torch.softmax(next_token_logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Append to sequence
input_ids = torch.cat([input_ids, next_token.unsqueeze(0)], dim=1)
# Check for EOS or max length
if next_token.item() == tokenizer.eos_token_id:
break
# Decode generated text
generated_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
model.train()
return generated_text
def main():
# Initialize training config
config = TrainingConfig()
# Setup accelerator for mixed precision and optimization
accelerator = Accelerator(
mixed_precision=config.mixed_precision,
gradient_accumulation_steps=config.gradient_accumulation_steps,
log_with="tensorboard",
project_dir=config.output_dir
)
# Create output directory
output_dir = Path(config.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
# Load dataset
print("Loading dataset...")
dataset = PackedDataset(config.data_path, config.seq_length)
dataloader = DataLoader(
dataset,
batch_size=config.batch_size,
shuffle=True,
pin_memory=True,
num_workers=0, # CHANGED: Back to 0 for stability (was 2)
persistent_workers=False # CHANGED: Disabled for stability (was True)
)
# Create model
print("Creating model...")
if config.model_config_path and Path(config.model_config_path).exists():
model = NeoMini.from_config(config.model_config_path)
else:
model_config = NeoMiniConfig()
model = NeoMini(model_config)
print(f"Model has {model.get_num_params():,} parameters")
# Enable gradient checkpointing for memory savings
if config.gradient_checkpointing:
model.gradient_checkpointing_enable = lambda: None # Placeholder
print("Gradient checkpointing enabled")
# Create optimizer
optimizer = torch.optim.AdamW(
model.parameters(),
lr=config.learning_rate,
betas=(config.beta1, config.beta2),
weight_decay=config.weight_decay
)
# Create scheduler
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=config.warmup_steps,
num_training_steps=config.max_steps
)
# Prepare with accelerator
model, optimizer, dataloader, scheduler = accelerator.prepare(
model, optimizer, dataloader, scheduler
)
# ADDED: Resume from checkpoint if specified
start_step = 0
total_loss = 0
if config.resume_from_checkpoint and Path(config.resume_from_checkpoint).exists():
# Unwrap model for loading (since accelerator wraps it)
unwrapped_model = accelerator.unwrap_model(model)
start_step, last_loss = load_checkpoint(
config.resume_from_checkpoint,
unwrapped_model,
optimizer,
scheduler
)
total_loss = last_loss * start_step # Approximate total loss
print(f"๐Ÿš€ Resuming training from step {start_step}")
else:
print("๐Ÿš€ Starting fresh training")
# Training loop
print("Starting training...")
model.train()
log_loss = 0
# Create infinite dataloader
dataloader_iter = iter(dataloader)
# MODIFIED: Start progress bar from start_step
progress_bar = tqdm(range(start_step, config.max_steps), desc="Training")
for step in progress_bar:
# Get batch
try:
batch = next(dataloader_iter)
except StopIteration:
dataloader_iter = iter(dataloader)
batch = next(dataloader_iter)
input_ids, targets = batch
with accelerator.accumulate(model):
# Forward pass
logits = model(input_ids)
loss = compute_loss(logits, targets)
# Backward pass
accelerator.backward(loss)
# Gradient clipping
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(model.parameters(), config.grad_clip)
# Optimizer step
optimizer.step()
scheduler.step()
optimizer.zero_grad()
# Logging
total_loss += loss.item()
log_loss += loss.item()
if step % config.log_interval == 0 and step > 0:
avg_loss = log_loss / config.log_interval
lr = scheduler.get_last_lr()[0]
progress_bar.set_postfix({
'loss': f'{avg_loss:.4f}',
'lr': f'{lr:.2e}',
'step': step
})
# Log to accelerator (tensorboard)
accelerator.log({
'train_loss': avg_loss,
'learning_rate': lr,
'step': step
}, step=step)
log_loss = 0
# Checkpointing
if step % config.save_interval == 0 and step > 0:
if accelerator.is_main_process:
# Unwrap model for saving
unwrapped_model = accelerator.unwrap_model(model)
save_checkpoint(
unwrapped_model, optimizer, scheduler,
step, total_loss / (step + 1 - start_step), config, output_dir # MODIFIED: Adjusted loss calculation
)
# Early stopping check
if step >= config.max_steps:
break
# Final checkpoint
if accelerator.is_main_process:
unwrapped_model = accelerator.unwrap_model(model)
final_checkpoint = save_checkpoint(
unwrapped_model, optimizer, scheduler,
step, total_loss / (step + 1 - start_step), config, output_dir # MODIFIED: Adjusted loss calculation
)
print(f"Training completed! Final checkpoint: {final_checkpoint}")
accelerator.end_training()
if __name__ == "__main__":
main()