File size: 19,362 Bytes
a683148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 |
# MAP-NEO Conversational Data Preprocessing Pipeline - FIXED VERSION
# Downloads conversational datasets, filters and formats for instruction fine-tuning
import json
import os
import itertools
from pathlib import Path
from datasets import load_dataset
from transformers import AutoTokenizer
import langdetect
from tqdm import tqdm
import argparse
import random
from collections import defaultdict
class ConversationDataPreprocessor:
def __init__(self, output_dir="data", max_length=1024):
self.output_dir = Path(output_dir)
self.max_length = max_length
self.setup_directories()
def setup_directories(self):
"""Create necessary directories"""
dirs = ["conversation_raw", "conversation_processed", "conversation_final"]
for d in dirs:
(self.output_dir / d).mkdir(parents=True, exist_ok=True)
def download_conversational_data(self, dataset_name="OpenAssistant/oasst1", num_conversations=20000):
"""Download conversational dataset from HuggingFace"""
print(f"Downloading {num_conversations} conversations from {dataset_name}...")
raw_path = self.output_dir / "conversation_raw" / f"{dataset_name.replace('/', '_')}_raw.jsonl"
try:
# Load dataset
ds = load_dataset(dataset_name, split="train", streaming=True)
downloaded = 0
with open(raw_path, "w", encoding="utf-8") as f:
for row in tqdm(itertools.islice(ds, num_conversations), total=num_conversations):
# Save raw conversation data
f.write(json.dumps(row, ensure_ascii=False) + "\n")
downloaded += 1
print(f"Raw conversational data saved to: {raw_path}")
print(f"Downloaded {downloaded} conversation records")
return raw_path
except Exception as e:
print(f"Error downloading {dataset_name}: {e}")
print("Trying alternative dataset...")
return self.download_alternative_dataset(num_conversations)
def download_alternative_dataset(self, num_conversations=20000):
"""Try alternative conversational datasets if primary fails"""
alternative_datasets = [
"databricks/databricks-dolly-15k",
"tatsu-lab/alpaca",
"vicgalle/alpaca-gpt4"
]
for dataset_name in alternative_datasets:
try:
print(f"Trying {dataset_name}...")
raw_path = self.output_dir / "conversation_raw" / f"{dataset_name.replace('/', '_')}_raw.jsonl"
ds = load_dataset(dataset_name, split="train")
# Sample if dataset is too large
if len(ds) > num_conversations:
ds = ds.shuffle(seed=42).select(range(num_conversations))
with open(raw_path, "w", encoding="utf-8") as f:
for row in tqdm(ds):
f.write(json.dumps(row, ensure_ascii=False) + "\n")
print(f"Successfully downloaded {len(ds)} records from {dataset_name}")
return raw_path
except Exception as e:
print(f"Failed to download {dataset_name}: {e}")
continue
raise Exception("All conversational datasets failed to download")
def process_conversations(self, input_path, dataset_name="auto"):
"""Process raw conversational data into standard format"""
print("Processing conversations into standard format...")
input_path = Path(input_path)
# Detect dataset type from filename
if "OpenAssistant" in str(input_path) or "oasst" in str(input_path):
return self.process_openassistant_messages(input_path)
else:
return self.process_other_datasets(input_path)
def process_openassistant_messages(self, input_path):
"""Process OpenAssistant individual messages into conversation chains"""
print("π Processing OpenAssistant messages into conversations...")
# Load all messages
messages = []
print("Loading messages...")
with open(input_path, 'r', encoding='utf-8') as f:
for line in tqdm(f, desc="Reading messages"):
try:
msg = json.loads(line)
# Filter for valid English messages
if (msg.get('lang') == 'en' and
not msg.get('deleted', False) and
msg.get('review_result', False) and
msg.get('text', '').strip()):
messages.append(msg)
except:
continue
print(f"Loaded {len(messages)} valid English messages")
# Group messages by conversation tree
trees = defaultdict(list)
for msg in messages:
tree_id = msg.get('message_tree_id')
if tree_id:
trees[tree_id].append(msg)
print(f"Found {len(trees)} conversation trees")
# Build conversation chains from each tree
conversations = []
for tree_id, tree_messages in tqdm(trees.items(), desc="Building conversations"):
# Create message lookup
msg_dict = {msg['message_id']: msg for msg in tree_messages}
# Find root messages (no parent)
roots = [msg for msg in tree_messages if not msg.get('parent_id')]
for root in roots:
try:
# Build all possible conversation paths from this root
paths = self.build_conversation_paths(root, msg_dict)
for path in paths:
# Convert to conversation format
conversation = []
for msg in path:
role = "user" if msg['role'] == "prompter" else "assistant"
conversation.append({
"role": role,
"content": msg['text'].strip()
})
# Validate conversation
if self.is_valid_conversation(conversation):
conversations.append({
"messages": conversation,
"tree_id": tree_id,
"source": "oasst1"
})
except Exception as e:
# Skip problematic trees
continue
print(f"Extracted {len(conversations)} valid conversations")
# Save processed conversations
output_path = self.output_dir / "conversation_processed" / "conversations_standardized.jsonl"
with open(output_path, "w", encoding="utf-8") as f:
for conv in conversations:
f.write(json.dumps(conv, ensure_ascii=False) + "\n")
print(f"Processed data saved to: {output_path}")
return output_path
def build_conversation_paths(self, root_msg, msg_dict, max_length=8):
"""Build all conversation paths starting from a root message - FIXED"""
def build_paths_recursive(msg, current_path):
paths = []
new_path = current_path + [msg]
# Find children of this message
children = []
for candidate in msg_dict.values():
if candidate.get('parent_id') == msg['message_id']:
children.append(candidate)
if not children:
# Leaf node - end of conversation path
if len(new_path) >= 2: # At least user + assistant
paths.append(new_path)
else:
# Continue with each child (take the best ranked one)
# Fix: Handle None values in rank
def get_rank(x):
rank = x.get('rank')
return rank if rank is not None else 999
try:
children.sort(key=get_rank) # Lower rank = better
best_child = children[0]
if len(new_path) < max_length: # Prevent very long conversations
child_paths = build_paths_recursive(best_child, new_path)
paths.extend(child_paths)
# Also save the current path if it's long enough
if len(new_path) >= 2:
paths.append(new_path)
except:
# If sorting fails, just take the first child
if children and len(new_path) < max_length:
child_paths = build_paths_recursive(children[0], new_path)
paths.extend(child_paths)
return paths
return build_paths_recursive(root_msg, [])
def is_valid_conversation(self, conversation):
"""Validate conversation quality"""
# Must have at least 2 messages
if len(conversation) < 2:
return False
# Check for alternating roles (user/assistant pattern)
for i in range(1, len(conversation)):
if conversation[i]['role'] == conversation[i-1]['role']:
return False
# Check message content quality
for msg in conversation:
content = msg['content']
if len(content) < 5 or len(content) > 1500:
return False
# Check total conversation length
total_length = sum(len(msg['content']) for msg in conversation)
if total_length < 20 or total_length > 3000:
return False
return True
def process_other_datasets(self, input_path):
"""Process non-OpenAssistant datasets (Dolly, Alpaca, etc.)"""
output_path = self.output_dir / "conversation_processed" / "conversations_standardized.jsonl"
conversations = []
total_count = 0
valid_count = 0
with open(input_path, "r", encoding="utf-8") as infile:
for line in tqdm(infile, desc="Processing conversations"):
total_count += 1
try:
raw_data = json.loads(line)
# Extract conversation based on format
conversation = self.extract_conversation_other_formats(raw_data)
if conversation and self.validate_simple_conversation(conversation):
conversations.append(conversation)
valid_count += 1
except Exception as e:
continue
# Save processed conversations
with open(output_path, "w", encoding="utf-8") as outfile:
for conv in conversations:
outfile.write(json.dumps(conv, ensure_ascii=False) + "\n")
print(f"Processed {valid_count}/{total_count} valid conversations")
print(f"Processed data saved to: {output_path}")
return output_path
def extract_conversation_other_formats(self, raw_data):
"""Extract conversation from various dataset formats"""
# Dolly format
if 'instruction' in raw_data and 'response' in raw_data:
messages = [
{"role": "user", "content": raw_data['instruction'].strip()}
]
if raw_data.get('context'):
messages[0]['content'] += f"\nContext: {raw_data['context'].strip()}"
messages.append({
"role": "assistant",
"content": raw_data['response'].strip()
})
return {
"messages": messages,
"category": raw_data.get('category', 'general'),
"source": "dolly"
}
# Alpaca format
elif 'instruction' in raw_data and 'output' in raw_data:
messages = [
{"role": "user", "content": raw_data['instruction'].strip()}
]
if raw_data.get('input'):
messages[0]['content'] += f"\nInput: {raw_data['input'].strip()}"
messages.append({
"role": "assistant",
"content": raw_data['output'].strip()
})
return {
"messages": messages,
"source": "alpaca"
}
return None
def validate_simple_conversation(self, conversation):
"""Validate conversation quality for simple formats"""
messages = conversation.get('messages', [])
# Must have at least 1 message
if len(messages) < 1:
return False
# Check message content
for msg in messages:
content = msg.get('content', '').strip()
if not content or len(content) < 5:
return False
# Check total length
total_length = sum(len(msg['content']) for msg in messages)
if total_length < 10 or total_length > 2000:
return False
return True
def format_for_training(self, input_path, train_format="instruction"):
"""Format conversations for fine-tuning"""
print(f"Formatting conversations for {train_format} training...")
input_path = Path(input_path)
output_path = self.output_dir / "conversation_final" / "conversation_train.jsonl"
test_path = self.output_dir / "conversation_final" / "conversation_test.jsonl"
conversations = []
# Load processed conversations
with open(input_path, "r", encoding="utf-8") as f:
for line in f:
conv = json.loads(line)
conversations.append(conv)
# Shuffle and split
random.shuffle(conversations)
split_point = int(len(conversations) * 0.9)
train_conversations = conversations[:split_point]
test_conversations = conversations[split_point:]
# Format for training
self.save_training_format(train_conversations, output_path, train_format)
self.save_training_format(test_conversations, test_path, train_format)
print(f"Training conversations: {len(train_conversations)}")
print(f"Test conversations: {len(test_conversations)}")
print(f"Training data saved to: {output_path}")
print(f"Test data saved to: {test_path}")
# Show samples
if train_conversations:
print("\nπ Sample conversations:")
for i, conv in enumerate(train_conversations[:3]):
print(f"\nConversation {i+1}:")
for j, msg in enumerate(conv['messages']):
content = msg['content'][:80] + "..." if len(msg['content']) > 80 else msg['content']
print(f" {j+1}. {msg['role'].title()}: {content}")
return output_path, test_path
def save_training_format(self, conversations, output_path, format_type):
"""Save conversations in training format"""
with open(output_path, "w", encoding="utf-8") as f:
for conv in conversations:
messages = conv['messages']
if len(messages) >= 2:
if format_type == "instruction":
# Instruction format: last message is target, rest is input
input_messages = []
for msg in messages[:-1]:
input_messages.append(f"{msg['role'].title()}: {msg['content']}")
training_example = {
"instruction": "Continue this conversation naturally and helpfully.",
"input": "\n".join(input_messages),
"output": messages[-1]['content']
}
elif format_type == "chat":
# Chat format: full conversation with system prompt
training_example = {
"messages": [
{"role": "system", "content": "You are MAP-NEO, a helpful AI assistant."}
] + messages
}
f.write(json.dumps(training_example, ensure_ascii=False) + "\n")
def main():
parser = argparse.ArgumentParser(description="Preprocess conversational data for fine-tuning")
parser.add_argument("--dataset", type=str, default="OpenAssistant/oasst1",
help="Dataset to download")
parser.add_argument("--num_conversations", type=int, default=20000,
help="Number of conversations to download")
parser.add_argument("--format", type=str, default="instruction",
choices=["instruction", "chat"],
help="Training format")
parser.add_argument("--output_dir", type=str, default="data",
help="Output directory")
args = parser.parse_args()
# Initialize preprocessor
preprocessor = ConversationDataPreprocessor(args.output_dir)
# Run pipeline
print("Starting conversational data preprocessing pipeline...")
# Step 1: Download conversational data
raw_path = preprocessor.download_conversational_data(
args.dataset, args.num_conversations
)
# Step 2: Process conversations (auto-detects OpenAssistant vs others)
processed_path = preprocessor.process_conversations(raw_path, args.dataset)
# Step 3: Format for training
train_path, test_path = preprocessor.format_for_training(
processed_path, args.format
)
print("\n" + "="*60)
print("π Conversational data preprocessing complete!")
print(f"Training data: {train_path}")
print(f"Test data: {test_path}")
print("\nπ Ready for conversational fine-tuning!")
print("Next step: python finetune_conversational.py")
print("="*60)
if __name__ == "__main__":
main()
|