--- license: apache-2.0 language: - en base_model: - Qwen/Qwen3-Embedding-8B --- ## ReaKase-8B ![ReaKase-8B](ReaKase.png) 👉 **ReaKase-8B**: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs. More information is available in [**arXiv**](https://arxiv.org/abs/2510.26178) & [**GitHub**](https://github.com/yanran-tang/ReaKase-8B). ## Example Usage ```python from transformers import AutoModel, AutoTokenizer model = AutoModel.from_pretrained("AnnaStudy/ReaKase-8B", torch_dtype="auto", device_map="auto") tokenizer = AutoTokenizer.from_pretrained("AnnaStudy/ReaKase-8B") case_txt = "The following contains key components of a legal case. Legal facts..." tokenized = tokenizer(case_txt, return_tensors='pt', padding=True, truncation=True, max_length=2048) outputs = model(**tokenized) case_embedding = outputs.last_hidden_state[:, -1] ``` ## Base Model ReaKase-8B is finetuned from **Qwen3-Embedding-8B**, which provides the underlying semantic representation capability. Reference: [Qwen/Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B) ## Cite If you find this repo useful, please cite ``` @article {ReaKase-8B, author = {Yanran Tang, Ruihong Qiu, Xue Li, Zi Huang}, title = {ReaKase-8B: Legal Case Retrieval via Knowledge and Reasoning Representations with LLMs}, journal = {CoRR}, volume = {abs/2510.26178}, year = {2025} } ```