add model files (#1)
Browse files- add pipelines code (5db2d1caff1982c5a728616c2bc21c35600d3b51)
- pipelines/__init__.py +0 -0
- pipelines/sd3_model.py +470 -0
- pipelines/sd3_teefusion_pipeline.py +264 -0
pipelines/__init__.py
ADDED
|
File without changes
|
pipelines/sd3_model.py
ADDED
|
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Modified by AIDC-AI, 2025
|
| 2 |
+
|
| 3 |
+
# This project is licensed under the Attribution-NonCommercial 4.0 International
|
| 4 |
+
# License (SPDX-License-Identifier: CC-BY-NC-4.0).
|
| 5 |
+
|
| 6 |
+
# Copyright 2025 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 7 |
+
#
|
| 8 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 11 |
+
# See the License for the specific language governing permissions and
|
| 12 |
+
# limitations under the License.
|
| 13 |
+
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 20 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin, SD3Transformer2DLoadersMixin
|
| 21 |
+
from diffusers.models.attention import FeedForward, JointTransformerBlock
|
| 22 |
+
from diffusers.models.attention_processor import (
|
| 23 |
+
Attention,
|
| 24 |
+
AttentionProcessor,
|
| 25 |
+
FusedJointAttnProcessor2_0,
|
| 26 |
+
JointAttnProcessor2_0,
|
| 27 |
+
)
|
| 28 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 29 |
+
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero
|
| 30 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 31 |
+
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
| 32 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 33 |
+
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed, TimestepEmbedding
|
| 34 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 35 |
+
|
| 36 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 37 |
+
|
| 38 |
+
@maybe_allow_in_graph
|
| 39 |
+
class SD3SingleTransformerBlock(nn.Module):
|
| 40 |
+
r"""
|
| 41 |
+
A Single Transformer block as part of the MMDiT architecture, used in Stable Diffusion 3 ControlNet.
|
| 42 |
+
|
| 43 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 44 |
+
|
| 45 |
+
Parameters:
|
| 46 |
+
dim (`int`): The number of channels in the input and output.
|
| 47 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 48 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
dim: int,
|
| 54 |
+
num_attention_heads: int,
|
| 55 |
+
attention_head_dim: int,
|
| 56 |
+
):
|
| 57 |
+
super().__init__()
|
| 58 |
+
|
| 59 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 60 |
+
|
| 61 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 62 |
+
processor = JointAttnProcessor2_0()
|
| 63 |
+
else:
|
| 64 |
+
raise ValueError(
|
| 65 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
self.attn = Attention(
|
| 69 |
+
query_dim=dim,
|
| 70 |
+
dim_head=attention_head_dim,
|
| 71 |
+
heads=num_attention_heads,
|
| 72 |
+
out_dim=dim,
|
| 73 |
+
bias=True,
|
| 74 |
+
processor=processor,
|
| 75 |
+
eps=1e-6,
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 79 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 80 |
+
|
| 81 |
+
def forward(self, hidden_states: torch.Tensor, temb: torch.Tensor):
|
| 82 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
|
| 83 |
+
# Attention.
|
| 84 |
+
attn_output = self.attn(
|
| 85 |
+
hidden_states=norm_hidden_states,
|
| 86 |
+
encoder_hidden_states=None,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Process attention outputs for the `hidden_states`.
|
| 90 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 91 |
+
hidden_states = hidden_states + attn_output
|
| 92 |
+
|
| 93 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 94 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 95 |
+
|
| 96 |
+
ff_output = self.ff(norm_hidden_states)
|
| 97 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 98 |
+
|
| 99 |
+
hidden_states = hidden_states + ff_output
|
| 100 |
+
|
| 101 |
+
return hidden_states
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
class SD3Transformer2DModel(
|
| 105 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, SD3Transformer2DLoadersMixin
|
| 106 |
+
):
|
| 107 |
+
"""
|
| 108 |
+
The Transformer model introduced in Stable Diffusion 3.
|
| 109 |
+
|
| 110 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 111 |
+
|
| 112 |
+
Parameters:
|
| 113 |
+
sample_size (`int`): The width of the latent images. This is fixed during training since
|
| 114 |
+
it is used to learn a number of position embeddings.
|
| 115 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 116 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 117 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of Transformer blocks to use.
|
| 118 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 119 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 120 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 121 |
+
caption_projection_dim (`int`): Number of dimensions to use when projecting the `encoder_hidden_states`.
|
| 122 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 123 |
+
out_channels (`int`, defaults to 16): Number of output channels.
|
| 124 |
+
|
| 125 |
+
"""
|
| 126 |
+
|
| 127 |
+
_supports_gradient_checkpointing = True
|
| 128 |
+
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
| 129 |
+
|
| 130 |
+
@register_to_config
|
| 131 |
+
def __init__(
|
| 132 |
+
self,
|
| 133 |
+
sample_size: int = 128,
|
| 134 |
+
patch_size: int = 2,
|
| 135 |
+
in_channels: int = 16,
|
| 136 |
+
num_layers: int = 18,
|
| 137 |
+
attention_head_dim: int = 64,
|
| 138 |
+
num_attention_heads: int = 18,
|
| 139 |
+
joint_attention_dim: int = 4096,
|
| 140 |
+
caption_projection_dim: int = 1152,
|
| 141 |
+
pooled_projection_dim: int = 2048,
|
| 142 |
+
out_channels: int = 16,
|
| 143 |
+
pos_embed_max_size: int = 96,
|
| 144 |
+
dual_attention_layers: Tuple[
|
| 145 |
+
int, ...
|
| 146 |
+
] = (), # () for sd3.0; (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) for sd3.5
|
| 147 |
+
qk_norm: Optional[str] = None,
|
| 148 |
+
guidance=False,
|
| 149 |
+
txt_align_guidance=False
|
| 150 |
+
):
|
| 151 |
+
super().__init__()
|
| 152 |
+
default_out_channels = in_channels
|
| 153 |
+
self.out_channels = out_channels if out_channels is not None else default_out_channels
|
| 154 |
+
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
| 155 |
+
|
| 156 |
+
self.pos_embed = PatchEmbed(
|
| 157 |
+
height=self.config.sample_size,
|
| 158 |
+
width=self.config.sample_size,
|
| 159 |
+
patch_size=self.config.patch_size,
|
| 160 |
+
in_channels=self.config.in_channels,
|
| 161 |
+
embed_dim=self.inner_dim,
|
| 162 |
+
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
| 163 |
+
)
|
| 164 |
+
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
| 165 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
|
| 166 |
+
)
|
| 167 |
+
self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.config.caption_projection_dim)
|
| 168 |
+
|
| 169 |
+
# `attention_head_dim` is doubled to account for the mixing.
|
| 170 |
+
# It needs to crafted when we get the actual checkpoints.
|
| 171 |
+
self.transformer_blocks = nn.ModuleList(
|
| 172 |
+
[
|
| 173 |
+
JointTransformerBlock(
|
| 174 |
+
dim=self.inner_dim,
|
| 175 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 176 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 177 |
+
context_pre_only=i == num_layers - 1,
|
| 178 |
+
qk_norm=qk_norm,
|
| 179 |
+
use_dual_attention=True if i in dual_attention_layers else False,
|
| 180 |
+
)
|
| 181 |
+
for i in range(self.config.num_layers)
|
| 182 |
+
]
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
| 186 |
+
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
| 187 |
+
|
| 188 |
+
self.gradient_checkpointing = False
|
| 189 |
+
|
| 190 |
+
self.guidance = guidance
|
| 191 |
+
if self.guidance:
|
| 192 |
+
self.guidance_in = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim)
|
| 193 |
+
|
| 194 |
+
self.txt_align_guidance = txt_align_guidance
|
| 195 |
+
|
| 196 |
+
assert not (self.guidance and self.txt_align_guidance)
|
| 197 |
+
|
| 198 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
| 199 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
| 200 |
+
"""
|
| 201 |
+
Sets the attention processor to use [feed forward
|
| 202 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
| 203 |
+
|
| 204 |
+
Parameters:
|
| 205 |
+
chunk_size (`int`, *optional*):
|
| 206 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
| 207 |
+
over each tensor of dim=`dim`.
|
| 208 |
+
dim (`int`, *optional*, defaults to `0`):
|
| 209 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
| 210 |
+
or dim=1 (sequence length).
|
| 211 |
+
"""
|
| 212 |
+
if dim not in [0, 1]:
|
| 213 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
| 214 |
+
|
| 215 |
+
# By default chunk size is 1
|
| 216 |
+
chunk_size = chunk_size or 1
|
| 217 |
+
|
| 218 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 219 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 220 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 221 |
+
|
| 222 |
+
for child in module.children():
|
| 223 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 224 |
+
|
| 225 |
+
for module in self.children():
|
| 226 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
| 227 |
+
|
| 228 |
+
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.disable_forward_chunking
|
| 229 |
+
def disable_forward_chunking(self):
|
| 230 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
| 231 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
| 232 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 233 |
+
|
| 234 |
+
for child in module.children():
|
| 235 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 236 |
+
|
| 237 |
+
for module in self.children():
|
| 238 |
+
fn_recursive_feed_forward(module, None, 0)
|
| 239 |
+
|
| 240 |
+
@property
|
| 241 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 242 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 243 |
+
r"""
|
| 244 |
+
Returns:
|
| 245 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 246 |
+
indexed by its weight name.
|
| 247 |
+
"""
|
| 248 |
+
# set recursively
|
| 249 |
+
processors = {}
|
| 250 |
+
|
| 251 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 252 |
+
if hasattr(module, "get_processor"):
|
| 253 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 254 |
+
|
| 255 |
+
for sub_name, child in module.named_children():
|
| 256 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 257 |
+
|
| 258 |
+
return processors
|
| 259 |
+
|
| 260 |
+
for name, module in self.named_children():
|
| 261 |
+
fn_recursive_add_processors(name, module, processors)
|
| 262 |
+
|
| 263 |
+
return processors
|
| 264 |
+
|
| 265 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 266 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
| 267 |
+
r"""
|
| 268 |
+
Sets the attention processor to use to compute attention.
|
| 269 |
+
|
| 270 |
+
Parameters:
|
| 271 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 272 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 273 |
+
for **all** `Attention` layers.
|
| 274 |
+
|
| 275 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 276 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 277 |
+
|
| 278 |
+
"""
|
| 279 |
+
count = len(self.attn_processors.keys())
|
| 280 |
+
|
| 281 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 282 |
+
raise ValueError(
|
| 283 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 284 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 288 |
+
if hasattr(module, "set_processor"):
|
| 289 |
+
if not isinstance(processor, dict):
|
| 290 |
+
module.set_processor(processor)
|
| 291 |
+
else:
|
| 292 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 293 |
+
|
| 294 |
+
for sub_name, child in module.named_children():
|
| 295 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 296 |
+
|
| 297 |
+
for name, module in self.named_children():
|
| 298 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 299 |
+
|
| 300 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedJointAttnProcessor2_0
|
| 301 |
+
def fuse_qkv_projections(self):
|
| 302 |
+
"""
|
| 303 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 304 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 305 |
+
|
| 306 |
+
<Tip warning={true}>
|
| 307 |
+
|
| 308 |
+
This API is 🧪 experimental.
|
| 309 |
+
|
| 310 |
+
</Tip>
|
| 311 |
+
"""
|
| 312 |
+
self.original_attn_processors = None
|
| 313 |
+
|
| 314 |
+
for _, attn_processor in self.attn_processors.items():
|
| 315 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
| 316 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
| 317 |
+
|
| 318 |
+
self.original_attn_processors = self.attn_processors
|
| 319 |
+
|
| 320 |
+
for module in self.modules():
|
| 321 |
+
if isinstance(module, Attention):
|
| 322 |
+
module.fuse_projections(fuse=True)
|
| 323 |
+
|
| 324 |
+
self.set_attn_processor(FusedJointAttnProcessor2_0())
|
| 325 |
+
|
| 326 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 327 |
+
def unfuse_qkv_projections(self):
|
| 328 |
+
"""Disables the fused QKV projection if enabled.
|
| 329 |
+
|
| 330 |
+
<Tip warning={true}>
|
| 331 |
+
|
| 332 |
+
This API is 🧪 experimental.
|
| 333 |
+
|
| 334 |
+
</Tip>
|
| 335 |
+
|
| 336 |
+
"""
|
| 337 |
+
if self.original_attn_processors is not None:
|
| 338 |
+
self.set_attn_processor(self.original_attn_processors)
|
| 339 |
+
|
| 340 |
+
def forward(
|
| 341 |
+
self,
|
| 342 |
+
hidden_states: torch.FloatTensor,
|
| 343 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 344 |
+
pooled_projections: torch.FloatTensor = None,
|
| 345 |
+
timestep: torch.LongTensor = None,
|
| 346 |
+
block_controlnet_hidden_states: List = None,
|
| 347 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 348 |
+
return_dict: bool = True,
|
| 349 |
+
skip_layers: Optional[List[int]] = None,
|
| 350 |
+
guidance = None,
|
| 351 |
+
txt_align_guidance = None,
|
| 352 |
+
txt_align_vec = None
|
| 353 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 354 |
+
"""
|
| 355 |
+
The [`SD3Transformer2DModel`] forward method.
|
| 356 |
+
|
| 357 |
+
Args:
|
| 358 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 359 |
+
Input `hidden_states`.
|
| 360 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 361 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 362 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
|
| 363 |
+
Embeddings projected from the embeddings of input conditions.
|
| 364 |
+
timestep (`torch.LongTensor`):
|
| 365 |
+
Used to indicate denoising step.
|
| 366 |
+
block_controlnet_hidden_states (`list` of `torch.Tensor`):
|
| 367 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 368 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 369 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 370 |
+
`self.processor` in
|
| 371 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 372 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 373 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 374 |
+
tuple.
|
| 375 |
+
skip_layers (`list` of `int`, *optional*):
|
| 376 |
+
A list of layer indices to skip during the forward pass.
|
| 377 |
+
|
| 378 |
+
Returns:
|
| 379 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 380 |
+
`tuple` where the first element is the sample tensor.
|
| 381 |
+
"""
|
| 382 |
+
if joint_attention_kwargs is not None:
|
| 383 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 384 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 385 |
+
else:
|
| 386 |
+
lora_scale = 1.0
|
| 387 |
+
|
| 388 |
+
if USE_PEFT_BACKEND:
|
| 389 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 390 |
+
scale_lora_layers(self, lora_scale)
|
| 391 |
+
else:
|
| 392 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 393 |
+
logger.warning(
|
| 394 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
height, width = hidden_states.shape[-2:]
|
| 398 |
+
|
| 399 |
+
hidden_states = self.pos_embed(hidden_states) # takes care of adding positional embeddings too.
|
| 400 |
+
temb = self.time_text_embed(timestep, pooled_projections)
|
| 401 |
+
|
| 402 |
+
if hasattr(self, 'guidance_in'):
|
| 403 |
+
assert guidance is not None
|
| 404 |
+
temb = temb + self.guidance_in(self.time_text_embed.time_proj(guidance).to(dtype=pooled_projections.dtype))
|
| 405 |
+
|
| 406 |
+
###############
|
| 407 |
+
if self.txt_align_guidance:
|
| 408 |
+
assert (txt_align_guidance is not None) and (txt_align_vec is not None)
|
| 409 |
+
temb = temb + (self.time_text_embed.timestep_embedder(self.time_text_embed.time_proj(txt_align_guidance).to(dtype=pooled_projections.dtype)) * self.time_text_embed.text_embedder(txt_align_vec)) / 256.
|
| 410 |
+
###############
|
| 411 |
+
|
| 412 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 413 |
+
|
| 414 |
+
if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
|
| 415 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
|
| 416 |
+
ip_hidden_states, ip_temb = self.image_proj(ip_adapter_image_embeds, timestep)
|
| 417 |
+
|
| 418 |
+
joint_attention_kwargs.update(ip_hidden_states=ip_hidden_states, temb=ip_temb)
|
| 419 |
+
|
| 420 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 421 |
+
# Skip specified layers
|
| 422 |
+
is_skip = True if skip_layers is not None and index_block in skip_layers else False
|
| 423 |
+
|
| 424 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing and not is_skip:
|
| 425 |
+
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
| 426 |
+
block,
|
| 427 |
+
hidden_states,
|
| 428 |
+
encoder_hidden_states,
|
| 429 |
+
temb,
|
| 430 |
+
joint_attention_kwargs,
|
| 431 |
+
)
|
| 432 |
+
elif not is_skip:
|
| 433 |
+
encoder_hidden_states, hidden_states = block(
|
| 434 |
+
hidden_states=hidden_states,
|
| 435 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 436 |
+
temb=temb,
|
| 437 |
+
joint_attention_kwargs=joint_attention_kwargs,
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# controlnet residual
|
| 441 |
+
if block_controlnet_hidden_states is not None and block.context_pre_only is False:
|
| 442 |
+
interval_control = len(self.transformer_blocks) / len(block_controlnet_hidden_states)
|
| 443 |
+
hidden_states = hidden_states + block_controlnet_hidden_states[int(index_block / interval_control)]
|
| 444 |
+
|
| 445 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 446 |
+
hidden_states = self.proj_out(hidden_states)
|
| 447 |
+
|
| 448 |
+
# unpatchify
|
| 449 |
+
patch_size = self.config.patch_size
|
| 450 |
+
height = height // patch_size
|
| 451 |
+
width = width // patch_size
|
| 452 |
+
|
| 453 |
+
hidden_states = hidden_states.reshape(
|
| 454 |
+
shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
|
| 455 |
+
)
|
| 456 |
+
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
|
| 457 |
+
output = hidden_states.reshape(
|
| 458 |
+
shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
if USE_PEFT_BACKEND:
|
| 462 |
+
# remove `lora_scale` from each PEFT layer
|
| 463 |
+
unscale_lora_layers(self, lora_scale)
|
| 464 |
+
|
| 465 |
+
if not return_dict:
|
| 466 |
+
return (output,)
|
| 467 |
+
|
| 468 |
+
return Transformer2DModelOutput(sample=output)
|
| 469 |
+
|
| 470 |
+
|
pipelines/sd3_teefusion_pipeline.py
ADDED
|
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (C) 2025 AIDC-AI
|
| 2 |
+
# This project is licensed under the Attribution-NonCommercial 4.0 International
|
| 3 |
+
# License (SPDX-License-Identifier: CC-BY-NC-4.0).
|
| 4 |
+
|
| 5 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 6 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 7 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 8 |
+
# See the License for the specific language governing permissions and
|
| 9 |
+
# limitations under the License.
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import torch
|
| 13 |
+
import torch.nn as nn
|
| 14 |
+
|
| 15 |
+
from typing import Union, List, Any, Optional
|
| 16 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 17 |
+
from PIL import Image
|
| 18 |
+
from diffusers import DiffusionPipeline, AutoencoderKL
|
| 19 |
+
from transformers import CLIPTextModelWithProjection, T5EncoderModel, CLIPTokenizer, T5Tokenizer
|
| 20 |
+
|
| 21 |
+
def get_noise(
|
| 22 |
+
num_samples: int,
|
| 23 |
+
channel: int,
|
| 24 |
+
height: int,
|
| 25 |
+
width: int,
|
| 26 |
+
device: torch.device,
|
| 27 |
+
dtype: torch.dtype,
|
| 28 |
+
seed: int,
|
| 29 |
+
):
|
| 30 |
+
return torch.randn(
|
| 31 |
+
num_samples,
|
| 32 |
+
channel,
|
| 33 |
+
height // 8,
|
| 34 |
+
width // 8,
|
| 35 |
+
device=device,
|
| 36 |
+
dtype=dtype,
|
| 37 |
+
generator=torch.Generator(device=device).manual_seed(seed),
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def get_clip_prompt_embeds(
|
| 41 |
+
clip_tokenizers,
|
| 42 |
+
clip_text_encoders,
|
| 43 |
+
prompt: Union[str, List[str]],
|
| 44 |
+
num_images_per_prompt: int = 1,
|
| 45 |
+
device: Optional[torch.device] = None,
|
| 46 |
+
clip_skip: Optional[int] = None,
|
| 47 |
+
clip_model_index: int = 0,
|
| 48 |
+
):
|
| 49 |
+
|
| 50 |
+
tokenizer_max_length = 77
|
| 51 |
+
tokenizer = clip_tokenizers[clip_model_index]
|
| 52 |
+
text_encoder = clip_text_encoders[clip_model_index]
|
| 53 |
+
|
| 54 |
+
batch_size = len(prompt)
|
| 55 |
+
|
| 56 |
+
text_inputs = tokenizer(
|
| 57 |
+
prompt,
|
| 58 |
+
padding="max_length",
|
| 59 |
+
max_length=tokenizer_max_length,
|
| 60 |
+
truncation=True,
|
| 61 |
+
return_tensors="pt",
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
text_input_ids = text_inputs.input_ids
|
| 65 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 66 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 67 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer_max_length - 1 : -1])
|
| 68 |
+
|
| 69 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
| 70 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
| 71 |
+
|
| 72 |
+
if clip_skip is None:
|
| 73 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 74 |
+
else:
|
| 75 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
| 76 |
+
|
| 77 |
+
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
| 78 |
+
|
| 79 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 80 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 81 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 82 |
+
|
| 83 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 84 |
+
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 85 |
+
|
| 86 |
+
return prompt_embeds, pooled_prompt_embeds
|
| 87 |
+
|
| 88 |
+
def get_t5_prompt_embeds(
|
| 89 |
+
tokenizer_3,
|
| 90 |
+
text_encoder_3,
|
| 91 |
+
prompt: Union[str, List[str]] = None,
|
| 92 |
+
num_images_per_prompt: int = 1,
|
| 93 |
+
max_sequence_length: int = 256,
|
| 94 |
+
device: Optional[torch.device] = None,
|
| 95 |
+
dtype: Optional[torch.dtype] = None,
|
| 96 |
+
):
|
| 97 |
+
|
| 98 |
+
tokenizer_max_length = 77
|
| 99 |
+
batch_size = len(prompt)
|
| 100 |
+
|
| 101 |
+
text_inputs = tokenizer_3(
|
| 102 |
+
prompt,
|
| 103 |
+
padding="max_length",
|
| 104 |
+
max_length=max_sequence_length,
|
| 105 |
+
truncation=True,
|
| 106 |
+
add_special_tokens=True,
|
| 107 |
+
return_tensors="pt",
|
| 108 |
+
)
|
| 109 |
+
text_input_ids = text_inputs.input_ids
|
| 110 |
+
untruncated_ids = tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
| 111 |
+
|
| 112 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 113 |
+
removed_text = tokenizer_3.batch_decode(untruncated_ids[:, tokenizer_max_length - 1 : -1])
|
| 114 |
+
|
| 115 |
+
prompt_embeds = text_encoder_3(text_input_ids.to(device))[0]
|
| 116 |
+
|
| 117 |
+
dtype = text_encoder_3.dtype
|
| 118 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 119 |
+
|
| 120 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 121 |
+
|
| 122 |
+
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 123 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 124 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 125 |
+
|
| 126 |
+
return prompt_embeds
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
@torch.no_grad()
|
| 130 |
+
def encode_text(clip_tokenizers, clip_text_encoders, tokenizer_3, text_encoder_3, prompt, device, max_sequence_length=256):
|
| 131 |
+
|
| 132 |
+
prompt_embed, pooled_prompt_embed = get_clip_prompt_embeds(clip_tokenizers, clip_text_encoders, prompt=prompt, device=device, clip_model_index=0)
|
| 133 |
+
prompt_2_embed, pooled_prompt_2_embed = get_clip_prompt_embeds(clip_tokenizers, clip_text_encoders, prompt=prompt, device=device, clip_model_index=1)
|
| 134 |
+
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
| 135 |
+
|
| 136 |
+
t5_prompt_embed = get_t5_prompt_embeds(tokenizer_3, text_encoder_3, prompt=prompt, max_sequence_length=max_sequence_length, device=device)
|
| 137 |
+
|
| 138 |
+
clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]))
|
| 139 |
+
|
| 140 |
+
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
| 141 |
+
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
| 142 |
+
|
| 143 |
+
return prompt_embeds, pooled_prompt_embeds
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class TeEFusionSD3Pipeline(DiffusionPipeline, ConfigMixin):
|
| 147 |
+
|
| 148 |
+
@register_to_config
|
| 149 |
+
def __init__(
|
| 150 |
+
self,
|
| 151 |
+
transformer: nn.Module,
|
| 152 |
+
text_encoder: CLIPTextModelWithProjection,
|
| 153 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
| 154 |
+
text_encoder_3: T5EncoderModel,
|
| 155 |
+
tokenizer: CLIPTokenizer,
|
| 156 |
+
tokenizer_2: CLIPTokenizer,
|
| 157 |
+
tokenizer_3: T5Tokenizer,
|
| 158 |
+
vae: AutoencoderKL,
|
| 159 |
+
scheduler: Any
|
| 160 |
+
):
|
| 161 |
+
super().__init__()
|
| 162 |
+
|
| 163 |
+
self.register_modules(
|
| 164 |
+
transformer=transformer,
|
| 165 |
+
text_encoder=text_encoder,
|
| 166 |
+
text_encoder_2=text_encoder_2,
|
| 167 |
+
text_encoder_3=text_encoder_3,
|
| 168 |
+
tokenizer=tokenizer,
|
| 169 |
+
tokenizer_2=tokenizer_2,
|
| 170 |
+
tokenizer_3=tokenizer_3,
|
| 171 |
+
vae=vae,
|
| 172 |
+
scheduler=scheduler
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
@classmethod
|
| 177 |
+
def from_pretrained(
|
| 178 |
+
cls,
|
| 179 |
+
pretrained_model_name_or_path: Union[str, os.PathLike],
|
| 180 |
+
**kwargs,
|
| 181 |
+
) -> "TeEFusionSD3Pipeline":
|
| 182 |
+
|
| 183 |
+
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 184 |
+
|
| 185 |
+
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
|
| 186 |
+
super().save_pretrained(save_directory)
|
| 187 |
+
|
| 188 |
+
@torch.no_grad()
|
| 189 |
+
def __call__(
|
| 190 |
+
self,
|
| 191 |
+
prompt: Union[str, List[str]],
|
| 192 |
+
num_inference_steps: int = 50,
|
| 193 |
+
guidance_scale: float = 7.5,
|
| 194 |
+
latents: torch.FloatTensor = None,
|
| 195 |
+
height: int = 1024,
|
| 196 |
+
width: int = 1024,
|
| 197 |
+
seed: int = 0,
|
| 198 |
+
):
|
| 199 |
+
if isinstance(prompt, str):
|
| 200 |
+
prompt = [prompt]
|
| 201 |
+
|
| 202 |
+
device = self.transformer.device
|
| 203 |
+
|
| 204 |
+
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
| 205 |
+
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
| 206 |
+
|
| 207 |
+
prompt_embeds, pooled_prompt_embeds = encode_text(clip_tokenizers, clip_text_encoders, self.tokenizer_3, self.text_encoder_3, prompt, device)
|
| 208 |
+
|
| 209 |
+
_, negative_pooled_prompt_embeds = encode_text(clip_tokenizers, clip_text_encoders, self.tokenizer_3, self.text_encoder_3, [''], device)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 213 |
+
timesteps = self.scheduler.timesteps
|
| 214 |
+
|
| 215 |
+
bs = len(prompt)
|
| 216 |
+
channels = self.transformer.config.in_channels
|
| 217 |
+
height = 16 * (height // 16)
|
| 218 |
+
width = 16 * (width // 16)
|
| 219 |
+
|
| 220 |
+
# prepare input
|
| 221 |
+
if latents is None:
|
| 222 |
+
latents = get_noise(
|
| 223 |
+
bs,
|
| 224 |
+
channels,
|
| 225 |
+
height,
|
| 226 |
+
width,
|
| 227 |
+
device=device,
|
| 228 |
+
dtype=self.transformer.dtype,
|
| 229 |
+
seed=seed,
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
for i, t in enumerate(timesteps):
|
| 233 |
+
noise_pred = self.transformer(
|
| 234 |
+
hidden_states=latents,
|
| 235 |
+
timestep=t.reshape(1),
|
| 236 |
+
encoder_hidden_states=prompt_embeds,
|
| 237 |
+
pooled_projections=pooled_prompt_embeds,
|
| 238 |
+
return_dict=False,
|
| 239 |
+
txt_align_guidance=torch.tensor(data=(guidance_scale,), dtype=self.transformer.dtype, device=self.transformer.device) * 1000.,
|
| 240 |
+
txt_align_vec=pooled_prompt_embeds - negative_pooled_prompt_embeds
|
| 241 |
+
)[0]
|
| 242 |
+
|
| 243 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 244 |
+
|
| 245 |
+
x = latents.float()
|
| 246 |
+
|
| 247 |
+
with torch.no_grad():
|
| 248 |
+
with torch.autocast(device_type=device.type, dtype=torch.float32):
|
| 249 |
+
if hasattr(self.vae.config, 'scaling_factor') and self.vae.config.scaling_factor is not None:
|
| 250 |
+
x = x / self.vae.config.scaling_factor
|
| 251 |
+
if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor is not None:
|
| 252 |
+
x = x + self.vae.config.shift_factor
|
| 253 |
+
x = self.vae.decode(x, return_dict=False)[0]
|
| 254 |
+
|
| 255 |
+
# bring into PIL format and save
|
| 256 |
+
x = (x / 2 + 0.5).clamp(0, 1)
|
| 257 |
+
x = x.cpu().permute(0, 2, 3, 1).float().numpy()
|
| 258 |
+
images = (x * 255).round().astype("uint8")
|
| 259 |
+
pil_images = [Image.fromarray(image) for image in images]
|
| 260 |
+
|
| 261 |
+
return pil_images
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|