Improve model card: Add pipeline_tag and enhance sample usage (#3)
Browse files- Improve model card: Add pipeline_tag and enhance sample usage (e7371cad0668f3f2b0a64ef7732d5acc47413a5a)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
---
|
| 2 |
-
license: cc-by-nc-4.0
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
base_model:
|
| 6 |
- stabilityai/stable-diffusion-3-medium
|
|
|
|
|
|
|
| 7 |
library_name: diffusers
|
| 8 |
-
|
| 9 |
-
|
|
|
|
| 10 |
---
|
|
|
|
| 11 |
# TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance (ICCV 2025)
|
| 12 |
|
| 13 |
<p align="center">
|
|
@@ -27,14 +28,14 @@ TeEFusion is a simple yet powerful distillation method that fuses classifier-fre
|
|
| 27 |
|
| 28 |
## 🚀 Key Features
|
| 29 |
|
| 30 |
-
*
|
| 31 |
-
|
| 32 |
|
| 33 |
-
*
|
| 34 |
-
|
| 35 |
|
| 36 |
-
*
|
| 37 |
-
|
| 38 |
|
| 39 |
---
|
| 40 |
|
|
@@ -56,7 +57,8 @@ from pipelines.sd3_teefusion_pipeline import TeEFusionSD3Pipeline
|
|
| 56 |
|
| 57 |
pipe = TeEFusionSD3Pipeline.from_pretrained(
|
| 58 |
"AIDC-AI/TeEFusion",
|
| 59 |
-
torch_dtype=torch.bfloat16
|
|
|
|
| 60 |
)
|
| 61 |
pipe.to("cuda")
|
| 62 |
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model:
|
| 3 |
- stabilityai/stable-diffusion-3-medium
|
| 4 |
+
language:
|
| 5 |
+
- en
|
| 6 |
library_name: diffusers
|
| 7 |
+
license: cc-by-nc-4.0
|
| 8 |
+
pipeline_tag: text-to-image
|
| 9 |
+
tags: []
|
| 10 |
---
|
| 11 |
+
|
| 12 |
# TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance (ICCV 2025)
|
| 13 |
|
| 14 |
<p align="center">
|
|
|
|
| 28 |
|
| 29 |
## 🚀 Key Features
|
| 30 |
|
| 31 |
+
* **Embed-Level Guidance Fusion**.
|
| 32 |
+
Incorporates guidance magnitude *w* by linearly combining conditional and null prompt embeddings, eliminating the need for two forward passes .
|
| 33 |
|
| 34 |
+
* **Test-Time Sampling Agnostic**.
|
| 35 |
+
Distills from complex teacher sampling strategy (Euler + CFG, Z-Sampling + CFG, W2SD + CFG) into a simple student that uses standard Euler sampling .
|
| 36 |
|
| 37 |
+
* **Parameter-Free**.
|
| 38 |
+
No extra network modules beyond the pretrained model’s encoder and decoder.
|
| 39 |
|
| 40 |
---
|
| 41 |
|
|
|
|
| 57 |
|
| 58 |
pipe = TeEFusionSD3Pipeline.from_pretrained(
|
| 59 |
"AIDC-AI/TeEFusion",
|
| 60 |
+
torch_dtype=torch.bfloat16,
|
| 61 |
+
trust_remote_code=True
|
| 62 |
)
|
| 63 |
pipe.to("cuda")
|
| 64 |
|