yi-01-ai
commited on
Commit
·
3d1b0c9
1
Parent(s):
65aab8d
Auto Sync from git://github.com/01-ai/Yi.git/commit/e3e47d27d65641181e2aeb600304181dd2a7230a
Browse files
README.md
CHANGED
|
@@ -860,7 +860,7 @@ python quantization/gptq/eval_quantized_model.py \
|
|
| 860 |
--trust_remote_code
|
| 861 |
```
|
| 862 |
|
| 863 |
-
<details style="display: inline;"><summary>For
|
| 864 |
|
| 865 |
#### GPT-Q quantization
|
| 866 |
|
|
@@ -885,7 +885,6 @@ python quant_autogptq.py --model /base_model \
|
|
| 885 |
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
|
| 886 |
```
|
| 887 |
|
| 888 |
-
|
| 889 |
##### Run Quantized Model
|
| 890 |
|
| 891 |
You can run a quantized model using the `eval_quantized_model.py`:
|
|
@@ -897,6 +896,7 @@ python eval_quantized_model.py --model /quantized_model --trust_remote_code
|
|
| 897 |
</details>
|
| 898 |
|
| 899 |
#### AWQ
|
|
|
|
| 900 |
```bash
|
| 901 |
python quantization/awq/quant_autoawq.py \
|
| 902 |
--model /base_model \
|
|
@@ -1017,7 +1017,9 @@ At the same time, we also warmly invite you to join our collaborative effort by
|
|
| 1017 |
With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
|
| 1018 |
|
| 1019 |
#### Tutorials
|
|
|
|
| 1020 |
##### English tutorials
|
|
|
|
| 1021 |
| Type | Deliverable | Date | Author |
|
| 1022 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
| 1023 |
| Video | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
|
|
@@ -1025,8 +1027,8 @@ With all these resources at your fingertips, you're ready to start your exciting
|
|
| 1025 |
| Video | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
|
| 1026 |
| Video | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
|
| 1027 |
|
| 1028 |
-
|
| 1029 |
##### Chinese tutorials
|
|
|
|
| 1030 |
| Type | Deliverable | Date | Author |
|
| 1031 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
| 1032 |
| Blog | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
|
|
@@ -1160,8 +1162,8 @@ For detailed capabilities of the Yi series model, see [Yi: Open Foundation Model
|
|
| 1160 |
|
| 1161 |
## Benchmarks
|
| 1162 |
|
| 1163 |
-
- [Chat model performance](
|
| 1164 |
-
- [Base model performance](
|
| 1165 |
|
| 1166 |
### Chat model performance
|
| 1167 |
|
|
@@ -1208,19 +1210,19 @@ Yi-9B is almost the best among a range of similar-sized open-source models (incl
|
|
| 1208 |
|
| 1209 |
- In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
| 1210 |
|
| 1211 |
-

|
| 1212 |
|
| 1213 |
- In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
| 1214 |
|
| 1215 |
-

|
| 1216 |
|
| 1217 |
- In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
| 1218 |
|
| 1219 |
-

|
| 1220 |
|
| 1221 |
- In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
| 1222 |
|
| 1223 |
-

|
| 1224 |
|
| 1225 |
<p align="right"> [
|
| 1226 |
<a href="#top">Back to top ⬆️ </a> ]
|
|
|
|
| 860 |
--trust_remote_code
|
| 861 |
```
|
| 862 |
|
| 863 |
+
<details style="display: inline;"><summary>For details, see the explanations below. ⬇️</summary> <ul>
|
| 864 |
|
| 865 |
#### GPT-Q quantization
|
| 866 |
|
|
|
|
| 885 |
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
|
| 886 |
```
|
| 887 |
|
|
|
|
| 888 |
##### Run Quantized Model
|
| 889 |
|
| 890 |
You can run a quantized model using the `eval_quantized_model.py`:
|
|
|
|
| 896 |
</details>
|
| 897 |
|
| 898 |
#### AWQ
|
| 899 |
+
|
| 900 |
```bash
|
| 901 |
python quantization/awq/quant_autoawq.py \
|
| 902 |
--model /base_model \
|
|
|
|
| 1017 |
With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
|
| 1018 |
|
| 1019 |
#### Tutorials
|
| 1020 |
+
|
| 1021 |
##### English tutorials
|
| 1022 |
+
|
| 1023 |
| Type | Deliverable | Date | Author |
|
| 1024 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
| 1025 |
| Video | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
|
|
|
|
| 1027 |
| Video | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
|
| 1028 |
| Video | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
|
| 1029 |
|
|
|
|
| 1030 |
##### Chinese tutorials
|
| 1031 |
+
|
| 1032 |
| Type | Deliverable | Date | Author |
|
| 1033 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
| 1034 |
| Blog | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
|
|
|
|
| 1162 |
|
| 1163 |
## Benchmarks
|
| 1164 |
|
| 1165 |
+
- [Chat model performance](#chat-model-performance)
|
| 1166 |
+
- [Base model performance](#base-model-performance)
|
| 1167 |
|
| 1168 |
### Chat model performance
|
| 1169 |
|
|
|
|
| 1210 |
|
| 1211 |
- In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
| 1212 |
|
| 1213 |
+

|
| 1214 |
|
| 1215 |
- In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
| 1216 |
|
| 1217 |
+

|
| 1218 |
|
| 1219 |
- In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
| 1220 |
|
| 1221 |
+

|
| 1222 |
|
| 1223 |
- In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
| 1224 |
|
| 1225 |
+

|
| 1226 |
|
| 1227 |
<p align="right"> [
|
| 1228 |
<a href="#top">Back to top ⬆️ </a> ]
|