zzzKAI commited on
Commit
8de82f3
·
verified ·
1 Parent(s): 95bfa39

Model save

Browse files
README.md CHANGED
@@ -1,199 +1,58 @@
1
  ---
 
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
10
 
 
 
11
 
12
- ## Model Details
 
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: Qwen/Qwen2-VL-2B-Instruct
3
  library_name: transformers
4
+ model_name: Qwen2-VL-2B-Instruct-SFT
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - sft
9
+ licence: license
10
  ---
11
 
12
+ # Model Card for Qwen2-VL-2B-Instruct-SFT
13
 
14
+ This model is a fine-tuned version of [Qwen/Qwen2-VL-2B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
+ ## Quick start
18
 
19
+ ```python
20
+ from transformers import pipeline
21
 
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="zzzKAI/Qwen2-VL-2B-Instruct-SFT", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
 
28
+ ## Training procedure
29
 
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/little-white/huggingface/runs/u00k35q4)
31
 
 
32
 
33
+ This model was trained with SFT.
 
 
 
 
 
 
34
 
35
+ ### Framework versions
36
 
37
+ - TRL: 0.14.0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.6.0+cu124
40
+ - Datasets: 3.6.0
41
+ - Tokenizers: 0.21.2
42
 
43
+ ## Citations
 
 
44
 
 
45
 
 
46
 
47
+ Cite TRL as:
48
+
49
+ ```bibtex
50
+ @misc{vonwerra2022trl,
51
+ title = {{TRL: Transformer Reinforcement Learning}},
52
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
53
+ year = 2020,
54
+ journal = {GitHub repository},
55
+ publisher = {GitHub},
56
+ howpublished = {\url{https://github.com/huggingface/trl}}
57
+ }
58
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9994440473353983,
3
+ "total_flos": 4.7290819683968614e+17,
4
+ "train_loss": 0.5221994996298216,
5
+ "train_runtime": 21044.2981,
6
+ "train_samples": 37773,
7
+ "train_samples_per_second": 1.795,
8
+ "train_steps_per_second": 0.075
9
+ }
config.json ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2-VL-2B-Instruct",
3
+ "architectures": [
4
+ "Qwen2VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 8960,
14
+ "max_position_embeddings": 32768,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_vl",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 2,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": true,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.49.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1536,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_vl",
42
+ "spatial_patch_size": 14,
43
+ "torch_dtype": "bfloat16"
44
+ },
45
+ "vision_end_token_id": 151653,
46
+ "vision_start_token_id": 151652,
47
+ "vision_token_id": 151654,
48
+ "vocab_size": 151936
49
+ }
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": null,
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "temperature": 0.01,
11
+ "top_k": 1,
12
+ "top_p": 0.001,
13
+ "transformers_version": "4.49.0.dev0",
14
+ "use_cache": false
15
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4909344b6a2741d1ed0f0073b702a7edc1598413249f40d13ca09e089a2d05df
3
+ size 4884798456
tokenizer_config.json CHANGED
@@ -138,7 +138,6 @@
138
  "model_max_length": 32768,
139
  "pad_token": "<|endoftext|>",
140
  "padding_side": "left",
141
- "processor_class": "Qwen2VLProcessor",
142
  "split_special_tokens": false,
143
  "tokenizer_class": "Qwen2Tokenizer",
144
  "unk_token": null
 
138
  "model_max_length": 32768,
139
  "pad_token": "<|endoftext|>",
140
  "padding_side": "left",
 
141
  "split_special_tokens": false,
142
  "tokenizer_class": "Qwen2Tokenizer",
143
  "unk_token": null
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 0.9994440473353983,
3
+ "total_flos": 4.7290819683968614e+17,
4
+ "train_loss": 0.5221994996298216,
5
+ "train_runtime": 21044.2981,
6
+ "train_samples": 37773,
7
+ "train_samples_per_second": 1.795,
8
+ "train_steps_per_second": 0.075
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,2240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.9994440473353983,
5
+ "eval_steps": 500,
6
+ "global_step": 1573,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0031768723691525695,
13
+ "grad_norm": 17.809675216674805,
14
+ "learning_rate": 6.329113924050634e-07,
15
+ "loss": 1.9316,
16
+ "step": 5
17
+ },
18
+ {
19
+ "epoch": 0.006353744738305139,
20
+ "grad_norm": 14.445319175720215,
21
+ "learning_rate": 1.2658227848101267e-06,
22
+ "loss": 1.9416,
23
+ "step": 10
24
+ },
25
+ {
26
+ "epoch": 0.009530617107457708,
27
+ "grad_norm": 8.333172798156738,
28
+ "learning_rate": 1.8987341772151901e-06,
29
+ "loss": 1.79,
30
+ "step": 15
31
+ },
32
+ {
33
+ "epoch": 0.012707489476610278,
34
+ "grad_norm": 5.169636249542236,
35
+ "learning_rate": 2.5316455696202535e-06,
36
+ "loss": 1.5866,
37
+ "step": 20
38
+ },
39
+ {
40
+ "epoch": 0.015884361845762845,
41
+ "grad_norm": 4.046501636505127,
42
+ "learning_rate": 3.164556962025317e-06,
43
+ "loss": 1.3408,
44
+ "step": 25
45
+ },
46
+ {
47
+ "epoch": 0.019061234214915415,
48
+ "grad_norm": 5.918606758117676,
49
+ "learning_rate": 3.7974683544303802e-06,
50
+ "loss": 1.0916,
51
+ "step": 30
52
+ },
53
+ {
54
+ "epoch": 0.022238106584067985,
55
+ "grad_norm": 3.1505024433135986,
56
+ "learning_rate": 4.430379746835443e-06,
57
+ "loss": 1.0186,
58
+ "step": 35
59
+ },
60
+ {
61
+ "epoch": 0.025414978953220556,
62
+ "grad_norm": 3.3473265171051025,
63
+ "learning_rate": 5.063291139240507e-06,
64
+ "loss": 0.9224,
65
+ "step": 40
66
+ },
67
+ {
68
+ "epoch": 0.028591851322373123,
69
+ "grad_norm": 3.4320054054260254,
70
+ "learning_rate": 5.69620253164557e-06,
71
+ "loss": 0.8603,
72
+ "step": 45
73
+ },
74
+ {
75
+ "epoch": 0.03176872369152569,
76
+ "grad_norm": 3.0531117916107178,
77
+ "learning_rate": 6.329113924050634e-06,
78
+ "loss": 0.8021,
79
+ "step": 50
80
+ },
81
+ {
82
+ "epoch": 0.03494559606067826,
83
+ "grad_norm": 2.459690570831299,
84
+ "learning_rate": 6.962025316455697e-06,
85
+ "loss": 0.7707,
86
+ "step": 55
87
+ },
88
+ {
89
+ "epoch": 0.03812246842983083,
90
+ "grad_norm": 2.4381773471832275,
91
+ "learning_rate": 7.5949367088607605e-06,
92
+ "loss": 0.7425,
93
+ "step": 60
94
+ },
95
+ {
96
+ "epoch": 0.041299340798983404,
97
+ "grad_norm": 2.486311435699463,
98
+ "learning_rate": 8.227848101265824e-06,
99
+ "loss": 0.7261,
100
+ "step": 65
101
+ },
102
+ {
103
+ "epoch": 0.04447621316813597,
104
+ "grad_norm": 3.9224603176116943,
105
+ "learning_rate": 8.860759493670886e-06,
106
+ "loss": 0.6954,
107
+ "step": 70
108
+ },
109
+ {
110
+ "epoch": 0.04765308553728854,
111
+ "grad_norm": 15.483328819274902,
112
+ "learning_rate": 9.49367088607595e-06,
113
+ "loss": 0.6716,
114
+ "step": 75
115
+ },
116
+ {
117
+ "epoch": 0.05082995790644111,
118
+ "grad_norm": 3.13858962059021,
119
+ "learning_rate": 1.0126582278481014e-05,
120
+ "loss": 0.6977,
121
+ "step": 80
122
+ },
123
+ {
124
+ "epoch": 0.05400683027559368,
125
+ "grad_norm": 2.8523001670837402,
126
+ "learning_rate": 1.0759493670886076e-05,
127
+ "loss": 0.6585,
128
+ "step": 85
129
+ },
130
+ {
131
+ "epoch": 0.057183702644746245,
132
+ "grad_norm": 3.508849859237671,
133
+ "learning_rate": 1.139240506329114e-05,
134
+ "loss": 0.6787,
135
+ "step": 90
136
+ },
137
+ {
138
+ "epoch": 0.06036057501389882,
139
+ "grad_norm": 2.026244640350342,
140
+ "learning_rate": 1.2025316455696203e-05,
141
+ "loss": 0.6398,
142
+ "step": 95
143
+ },
144
+ {
145
+ "epoch": 0.06353744738305138,
146
+ "grad_norm": 3.702071189880371,
147
+ "learning_rate": 1.2658227848101268e-05,
148
+ "loss": 0.6447,
149
+ "step": 100
150
+ },
151
+ {
152
+ "epoch": 0.06671431975220396,
153
+ "grad_norm": 2.9863617420196533,
154
+ "learning_rate": 1.329113924050633e-05,
155
+ "loss": 0.6313,
156
+ "step": 105
157
+ },
158
+ {
159
+ "epoch": 0.06989119212135653,
160
+ "grad_norm": 2.7040019035339355,
161
+ "learning_rate": 1.3924050632911395e-05,
162
+ "loss": 0.6274,
163
+ "step": 110
164
+ },
165
+ {
166
+ "epoch": 0.0730680644905091,
167
+ "grad_norm": 2.6223275661468506,
168
+ "learning_rate": 1.4556962025316457e-05,
169
+ "loss": 0.6421,
170
+ "step": 115
171
+ },
172
+ {
173
+ "epoch": 0.07624493685966166,
174
+ "grad_norm": 2.3697361946105957,
175
+ "learning_rate": 1.5189873417721521e-05,
176
+ "loss": 0.6268,
177
+ "step": 120
178
+ },
179
+ {
180
+ "epoch": 0.07942180922881423,
181
+ "grad_norm": 2.227189302444458,
182
+ "learning_rate": 1.5822784810126583e-05,
183
+ "loss": 0.6415,
184
+ "step": 125
185
+ },
186
+ {
187
+ "epoch": 0.08259868159796681,
188
+ "grad_norm": 2.316190242767334,
189
+ "learning_rate": 1.6455696202531647e-05,
190
+ "loss": 0.6076,
191
+ "step": 130
192
+ },
193
+ {
194
+ "epoch": 0.08577555396711938,
195
+ "grad_norm": 2.2983508110046387,
196
+ "learning_rate": 1.708860759493671e-05,
197
+ "loss": 0.5924,
198
+ "step": 135
199
+ },
200
+ {
201
+ "epoch": 0.08895242633627194,
202
+ "grad_norm": 1.7339043617248535,
203
+ "learning_rate": 1.7721518987341772e-05,
204
+ "loss": 0.6322,
205
+ "step": 140
206
+ },
207
+ {
208
+ "epoch": 0.09212929870542451,
209
+ "grad_norm": 1.9135723114013672,
210
+ "learning_rate": 1.8354430379746836e-05,
211
+ "loss": 0.6169,
212
+ "step": 145
213
+ },
214
+ {
215
+ "epoch": 0.09530617107457708,
216
+ "grad_norm": 1.901855230331421,
217
+ "learning_rate": 1.89873417721519e-05,
218
+ "loss": 0.6093,
219
+ "step": 150
220
+ },
221
+ {
222
+ "epoch": 0.09848304344372964,
223
+ "grad_norm": 1.660704493522644,
224
+ "learning_rate": 1.9620253164556964e-05,
225
+ "loss": 0.6128,
226
+ "step": 155
227
+ },
228
+ {
229
+ "epoch": 0.10165991581288222,
230
+ "grad_norm": 1.8829810619354248,
231
+ "learning_rate": 1.9999901413795314e-05,
232
+ "loss": 0.6008,
233
+ "step": 160
234
+ },
235
+ {
236
+ "epoch": 0.10483678818203479,
237
+ "grad_norm": 2.084669351577759,
238
+ "learning_rate": 1.9998792341316304e-05,
239
+ "loss": 0.618,
240
+ "step": 165
241
+ },
242
+ {
243
+ "epoch": 0.10801366055118736,
244
+ "grad_norm": 1.7610174417495728,
245
+ "learning_rate": 1.9996451100730896e-05,
246
+ "loss": 0.6038,
247
+ "step": 170
248
+ },
249
+ {
250
+ "epoch": 0.11119053292033992,
251
+ "grad_norm": 2.0930941104888916,
252
+ "learning_rate": 1.999287798055413e-05,
253
+ "loss": 0.5973,
254
+ "step": 175
255
+ },
256
+ {
257
+ "epoch": 0.11436740528949249,
258
+ "grad_norm": 2.1560468673706055,
259
+ "learning_rate": 1.9988073421107646e-05,
260
+ "loss": 0.5826,
261
+ "step": 180
262
+ },
263
+ {
264
+ "epoch": 0.11754427765864506,
265
+ "grad_norm": 1.6942908763885498,
266
+ "learning_rate": 1.998203801446545e-05,
267
+ "loss": 0.5689,
268
+ "step": 185
269
+ },
270
+ {
271
+ "epoch": 0.12072115002779764,
272
+ "grad_norm": 1.6405870914459229,
273
+ "learning_rate": 1.9974772504380907e-05,
274
+ "loss": 0.5516,
275
+ "step": 190
276
+ },
277
+ {
278
+ "epoch": 0.1238980223969502,
279
+ "grad_norm": 1.5230438709259033,
280
+ "learning_rate": 1.9966277786195137e-05,
281
+ "loss": 0.5703,
282
+ "step": 195
283
+ },
284
+ {
285
+ "epoch": 0.12707489476610276,
286
+ "grad_norm": 1.5323349237442017,
287
+ "learning_rate": 1.9956554906726627e-05,
288
+ "loss": 0.5821,
289
+ "step": 200
290
+ },
291
+ {
292
+ "epoch": 0.13025176713525535,
293
+ "grad_norm": 1.4441514015197754,
294
+ "learning_rate": 1.994560506414229e-05,
295
+ "loss": 0.6008,
296
+ "step": 205
297
+ },
298
+ {
299
+ "epoch": 0.13342863950440792,
300
+ "grad_norm": 1.5659058094024658,
301
+ "learning_rate": 1.9933429607809746e-05,
302
+ "loss": 0.586,
303
+ "step": 210
304
+ },
305
+ {
306
+ "epoch": 0.1366055118735605,
307
+ "grad_norm": 1.8428056240081787,
308
+ "learning_rate": 1.9920030038131104e-05,
309
+ "loss": 0.5608,
310
+ "step": 215
311
+ },
312
+ {
313
+ "epoch": 0.13978238424271305,
314
+ "grad_norm": 1.4605518579483032,
315
+ "learning_rate": 1.990540800635801e-05,
316
+ "loss": 0.5217,
317
+ "step": 220
318
+ },
319
+ {
320
+ "epoch": 0.14295925661186562,
321
+ "grad_norm": 1.4116017818450928,
322
+ "learning_rate": 1.98895653143882e-05,
323
+ "loss": 0.5979,
324
+ "step": 225
325
+ },
326
+ {
327
+ "epoch": 0.1461361289810182,
328
+ "grad_norm": 1.426926612854004,
329
+ "learning_rate": 1.9872503914543416e-05,
330
+ "loss": 0.5739,
331
+ "step": 230
332
+ },
333
+ {
334
+ "epoch": 0.14931300135017075,
335
+ "grad_norm": 1.7036380767822266,
336
+ "learning_rate": 1.9854225909328845e-05,
337
+ "loss": 0.56,
338
+ "step": 235
339
+ },
340
+ {
341
+ "epoch": 0.15248987371932332,
342
+ "grad_norm": 1.400126576423645,
343
+ "learning_rate": 1.9834733551174014e-05,
344
+ "loss": 0.5589,
345
+ "step": 240
346
+ },
347
+ {
348
+ "epoch": 0.1556667460884759,
349
+ "grad_norm": 1.3639277219772339,
350
+ "learning_rate": 1.9814029242155217e-05,
351
+ "loss": 0.5827,
352
+ "step": 245
353
+ },
354
+ {
355
+ "epoch": 0.15884361845762845,
356
+ "grad_norm": 1.3997248411178589,
357
+ "learning_rate": 1.9792115533699493e-05,
358
+ "loss": 0.5768,
359
+ "step": 250
360
+ },
361
+ {
362
+ "epoch": 0.16202049082678102,
363
+ "grad_norm": 1.3513110876083374,
364
+ "learning_rate": 1.976899512627024e-05,
365
+ "loss": 0.56,
366
+ "step": 255
367
+ },
368
+ {
369
+ "epoch": 0.16519736319593362,
370
+ "grad_norm": 1.338847279548645,
371
+ "learning_rate": 1.9744670869034407e-05,
372
+ "loss": 0.5212,
373
+ "step": 260
374
+ },
375
+ {
376
+ "epoch": 0.16837423556508618,
377
+ "grad_norm": 1.4440042972564697,
378
+ "learning_rate": 1.971914575951138e-05,
379
+ "loss": 0.5708,
380
+ "step": 265
381
+ },
382
+ {
383
+ "epoch": 0.17155110793423875,
384
+ "grad_norm": 1.3869779109954834,
385
+ "learning_rate": 1.969242294320362e-05,
386
+ "loss": 0.5483,
387
+ "step": 270
388
+ },
389
+ {
390
+ "epoch": 0.17472798030339132,
391
+ "grad_norm": 1.5152400732040405,
392
+ "learning_rate": 1.9664505713209017e-05,
393
+ "loss": 0.554,
394
+ "step": 275
395
+ },
396
+ {
397
+ "epoch": 0.17790485267254388,
398
+ "grad_norm": 1.3730214834213257,
399
+ "learning_rate": 1.9635397509815087e-05,
400
+ "loss": 0.5478,
401
+ "step": 280
402
+ },
403
+ {
404
+ "epoch": 0.18108172504169645,
405
+ "grad_norm": 1.4039232730865479,
406
+ "learning_rate": 1.9605101920075003e-05,
407
+ "loss": 0.5253,
408
+ "step": 285
409
+ },
410
+ {
411
+ "epoch": 0.18425859741084902,
412
+ "grad_norm": 1.5447697639465332,
413
+ "learning_rate": 1.9573622677365572e-05,
414
+ "loss": 0.5343,
415
+ "step": 290
416
+ },
417
+ {
418
+ "epoch": 0.18743546978000158,
419
+ "grad_norm": 1.3592406511306763,
420
+ "learning_rate": 1.954096366092717e-05,
421
+ "loss": 0.572,
422
+ "step": 295
423
+ },
424
+ {
425
+ "epoch": 0.19061234214915415,
426
+ "grad_norm": 1.4715423583984375,
427
+ "learning_rate": 1.9507128895385676e-05,
428
+ "loss": 0.5579,
429
+ "step": 300
430
+ },
431
+ {
432
+ "epoch": 0.19378921451830672,
433
+ "grad_norm": 1.3932384252548218,
434
+ "learning_rate": 1.9472122550256516e-05,
435
+ "loss": 0.5669,
436
+ "step": 305
437
+ },
438
+ {
439
+ "epoch": 0.19696608688745929,
440
+ "grad_norm": 1.216783046722412,
441
+ "learning_rate": 1.9435948939430868e-05,
442
+ "loss": 0.5204,
443
+ "step": 310
444
+ },
445
+ {
446
+ "epoch": 0.20014295925661185,
447
+ "grad_norm": 1.2733324766159058,
448
+ "learning_rate": 1.9398612520644028e-05,
449
+ "loss": 0.5181,
450
+ "step": 315
451
+ },
452
+ {
453
+ "epoch": 0.20331983162576445,
454
+ "grad_norm": 1.4451696872711182,
455
+ "learning_rate": 1.936011789492609e-05,
456
+ "loss": 0.5507,
457
+ "step": 320
458
+ },
459
+ {
460
+ "epoch": 0.206496703994917,
461
+ "grad_norm": 1.3773140907287598,
462
+ "learning_rate": 1.9320469806034937e-05,
463
+ "loss": 0.5342,
464
+ "step": 325
465
+ },
466
+ {
467
+ "epoch": 0.20967357636406958,
468
+ "grad_norm": 1.330608606338501,
469
+ "learning_rate": 1.9279673139871686e-05,
470
+ "loss": 0.5355,
471
+ "step": 330
472
+ },
473
+ {
474
+ "epoch": 0.21285044873322215,
475
+ "grad_norm": 1.1820790767669678,
476
+ "learning_rate": 1.923773292387857e-05,
477
+ "loss": 0.5492,
478
+ "step": 335
479
+ },
480
+ {
481
+ "epoch": 0.21602732110237471,
482
+ "grad_norm": 1.4723114967346191,
483
+ "learning_rate": 1.9194654326419405e-05,
484
+ "loss": 0.5303,
485
+ "step": 340
486
+ },
487
+ {
488
+ "epoch": 0.21920419347152728,
489
+ "grad_norm": 1.3733022212982178,
490
+ "learning_rate": 1.9150442656142675e-05,
491
+ "loss": 0.5085,
492
+ "step": 345
493
+ },
494
+ {
495
+ "epoch": 0.22238106584067985,
496
+ "grad_norm": 1.2373732328414917,
497
+ "learning_rate": 1.910510336132735e-05,
498
+ "loss": 0.5333,
499
+ "step": 350
500
+ },
501
+ {
502
+ "epoch": 0.22555793820983241,
503
+ "grad_norm": 1.3679918050765991,
504
+ "learning_rate": 1.9058642029211492e-05,
505
+ "loss": 0.5518,
506
+ "step": 355
507
+ },
508
+ {
509
+ "epoch": 0.22873481057898498,
510
+ "grad_norm": 1.4029483795166016,
511
+ "learning_rate": 1.9011064385303697e-05,
512
+ "loss": 0.5217,
513
+ "step": 360
514
+ },
515
+ {
516
+ "epoch": 0.23191168294813755,
517
+ "grad_norm": 1.2620315551757812,
518
+ "learning_rate": 1.896237629267757e-05,
519
+ "loss": 0.5386,
520
+ "step": 365
521
+ },
522
+ {
523
+ "epoch": 0.23508855531729012,
524
+ "grad_norm": 1.207796335220337,
525
+ "learning_rate": 1.8912583751249184e-05,
526
+ "loss": 0.5053,
527
+ "step": 370
528
+ },
529
+ {
530
+ "epoch": 0.2382654276864427,
531
+ "grad_norm": 1.3968982696533203,
532
+ "learning_rate": 1.886169289703771e-05,
533
+ "loss": 0.5457,
534
+ "step": 375
535
+ },
536
+ {
537
+ "epoch": 0.24144230005559528,
538
+ "grad_norm": 1.2062251567840576,
539
+ "learning_rate": 1.880971000140926e-05,
540
+ "loss": 0.5248,
541
+ "step": 380
542
+ },
543
+ {
544
+ "epoch": 0.24461917242474784,
545
+ "grad_norm": 1.5815231800079346,
546
+ "learning_rate": 1.875664147030406e-05,
547
+ "loss": 0.534,
548
+ "step": 385
549
+ },
550
+ {
551
+ "epoch": 0.2477960447939004,
552
+ "grad_norm": 1.2773513793945312,
553
+ "learning_rate": 1.870249384344704e-05,
554
+ "loss": 0.5188,
555
+ "step": 390
556
+ },
557
+ {
558
+ "epoch": 0.250972917163053,
559
+ "grad_norm": 1.4699748754501343,
560
+ "learning_rate": 1.864727379354191e-05,
561
+ "loss": 0.5271,
562
+ "step": 395
563
+ },
564
+ {
565
+ "epoch": 0.2541497895322055,
566
+ "grad_norm": 1.5354286432266235,
567
+ "learning_rate": 1.8590988125448906e-05,
568
+ "loss": 0.5087,
569
+ "step": 400
570
+ },
571
+ {
572
+ "epoch": 0.2573266619013581,
573
+ "grad_norm": 1.1777474880218506,
574
+ "learning_rate": 1.853364377534618e-05,
575
+ "loss": 0.4959,
576
+ "step": 405
577
+ },
578
+ {
579
+ "epoch": 0.2605035342705107,
580
+ "grad_norm": 1.197090744972229,
581
+ "learning_rate": 1.8475247809875076e-05,
582
+ "loss": 0.5336,
583
+ "step": 410
584
+ },
585
+ {
586
+ "epoch": 0.26368040663966325,
587
+ "grad_norm": 1.1266974210739136,
588
+ "learning_rate": 1.8415807425269273e-05,
589
+ "loss": 0.5502,
590
+ "step": 415
591
+ },
592
+ {
593
+ "epoch": 0.26685727900881584,
594
+ "grad_norm": 1.2330613136291504,
595
+ "learning_rate": 1.8355329946467984e-05,
596
+ "loss": 0.5332,
597
+ "step": 420
598
+ },
599
+ {
600
+ "epoch": 0.2700341513779684,
601
+ "grad_norm": 1.227715015411377,
602
+ "learning_rate": 1.8293822826213302e-05,
603
+ "loss": 0.51,
604
+ "step": 425
605
+ },
606
+ {
607
+ "epoch": 0.273211023747121,
608
+ "grad_norm": 1.3449698686599731,
609
+ "learning_rate": 1.823129364413178e-05,
610
+ "loss": 0.5039,
611
+ "step": 430
612
+ },
613
+ {
614
+ "epoch": 0.2763878961162735,
615
+ "grad_norm": 1.2230104207992554,
616
+ "learning_rate": 1.8167750105800367e-05,
617
+ "loss": 0.5356,
618
+ "step": 435
619
+ },
620
+ {
621
+ "epoch": 0.2795647684854261,
622
+ "grad_norm": 1.2294344902038574,
623
+ "learning_rate": 1.8103200041796864e-05,
624
+ "loss": 0.5379,
625
+ "step": 440
626
+ },
627
+ {
628
+ "epoch": 0.28274164085457865,
629
+ "grad_norm": 1.120505690574646,
630
+ "learning_rate": 1.8037651406734936e-05,
631
+ "loss": 0.5017,
632
+ "step": 445
633
+ },
634
+ {
635
+ "epoch": 0.28591851322373124,
636
+ "grad_norm": 1.1958080530166626,
637
+ "learning_rate": 1.7971112278283836e-05,
638
+ "loss": 0.5307,
639
+ "step": 450
640
+ },
641
+ {
642
+ "epoch": 0.2890953855928838,
643
+ "grad_norm": 1.2974480390548706,
644
+ "learning_rate": 1.7903590856173004e-05,
645
+ "loss": 0.5287,
646
+ "step": 455
647
+ },
648
+ {
649
+ "epoch": 0.2922722579620364,
650
+ "grad_norm": 1.2087041139602661,
651
+ "learning_rate": 1.7835095461181594e-05,
652
+ "loss": 0.4981,
653
+ "step": 460
654
+ },
655
+ {
656
+ "epoch": 0.29544913033118897,
657
+ "grad_norm": 1.2422888278961182,
658
+ "learning_rate": 1.7765634534113075e-05,
659
+ "loss": 0.5292,
660
+ "step": 465
661
+ },
662
+ {
663
+ "epoch": 0.2986260027003415,
664
+ "grad_norm": 1.2754653692245483,
665
+ "learning_rate": 1.7695216634755076e-05,
666
+ "loss": 0.5334,
667
+ "step": 470
668
+ },
669
+ {
670
+ "epoch": 0.3018028750694941,
671
+ "grad_norm": 1.4292696714401245,
672
+ "learning_rate": 1.762385044082454e-05,
673
+ "loss": 0.5223,
674
+ "step": 475
675
+ },
676
+ {
677
+ "epoch": 0.30497974743864664,
678
+ "grad_norm": 1.1018996238708496,
679
+ "learning_rate": 1.7551544746898355e-05,
680
+ "loss": 0.5291,
681
+ "step": 480
682
+ },
683
+ {
684
+ "epoch": 0.30815661980779924,
685
+ "grad_norm": 1.2348871231079102,
686
+ "learning_rate": 1.7478308463329584e-05,
687
+ "loss": 0.5271,
688
+ "step": 485
689
+ },
690
+ {
691
+ "epoch": 0.3113334921769518,
692
+ "grad_norm": 1.2747186422348022,
693
+ "learning_rate": 1.7404150615149433e-05,
694
+ "loss": 0.5171,
695
+ "step": 490
696
+ },
697
+ {
698
+ "epoch": 0.31451036454610437,
699
+ "grad_norm": 1.1623306274414062,
700
+ "learning_rate": 1.7329080340955063e-05,
701
+ "loss": 0.512,
702
+ "step": 495
703
+ },
704
+ {
705
+ "epoch": 0.3176872369152569,
706
+ "grad_norm": 1.3075213432312012,
707
+ "learning_rate": 1.725310689178344e-05,
708
+ "loss": 0.4984,
709
+ "step": 500
710
+ },
711
+ {
712
+ "epoch": 0.3208641092844095,
713
+ "grad_norm": 1.14993417263031,
714
+ "learning_rate": 1.7176239629971325e-05,
715
+ "loss": 0.5118,
716
+ "step": 505
717
+ },
718
+ {
719
+ "epoch": 0.32404098165356204,
720
+ "grad_norm": 1.3417556285858154,
721
+ "learning_rate": 1.709848802800151e-05,
722
+ "loss": 0.4961,
723
+ "step": 510
724
+ },
725
+ {
726
+ "epoch": 0.32721785402271464,
727
+ "grad_norm": 1.2760066986083984,
728
+ "learning_rate": 1.7019861667335524e-05,
729
+ "loss": 0.4922,
730
+ "step": 515
731
+ },
732
+ {
733
+ "epoch": 0.33039472639186723,
734
+ "grad_norm": 1.1567506790161133,
735
+ "learning_rate": 1.6940370237232887e-05,
736
+ "loss": 0.4858,
737
+ "step": 520
738
+ },
739
+ {
740
+ "epoch": 0.33357159876101977,
741
+ "grad_norm": 1.4701095819473267,
742
+ "learning_rate": 1.6860023533557106e-05,
743
+ "loss": 0.4964,
744
+ "step": 525
745
+ },
746
+ {
747
+ "epoch": 0.33674847113017237,
748
+ "grad_norm": 1.2197904586791992,
749
+ "learning_rate": 1.677883145756848e-05,
750
+ "loss": 0.487,
751
+ "step": 530
752
+ },
753
+ {
754
+ "epoch": 0.3399253434993249,
755
+ "grad_norm": 1.1546249389648438,
756
+ "learning_rate": 1.669680401470398e-05,
757
+ "loss": 0.4745,
758
+ "step": 535
759
+ },
760
+ {
761
+ "epoch": 0.3431022158684775,
762
+ "grad_norm": 1.1630467176437378,
763
+ "learning_rate": 1.661395131334425e-05,
764
+ "loss": 0.5103,
765
+ "step": 540
766
+ },
767
+ {
768
+ "epoch": 0.34627908823763004,
769
+ "grad_norm": 1.2125153541564941,
770
+ "learning_rate": 1.6530283563567927e-05,
771
+ "loss": 0.5193,
772
+ "step": 545
773
+ },
774
+ {
775
+ "epoch": 0.34945596060678263,
776
+ "grad_norm": 1.4535295963287354,
777
+ "learning_rate": 1.644581107589346e-05,
778
+ "loss": 0.5122,
779
+ "step": 550
780
+ },
781
+ {
782
+ "epoch": 0.3526328329759352,
783
+ "grad_norm": 1.1809464693069458,
784
+ "learning_rate": 1.636054426000849e-05,
785
+ "loss": 0.5062,
786
+ "step": 555
787
+ },
788
+ {
789
+ "epoch": 0.35580970534508777,
790
+ "grad_norm": 1.2318694591522217,
791
+ "learning_rate": 1.6274493623487094e-05,
792
+ "loss": 0.4834,
793
+ "step": 560
794
+ },
795
+ {
796
+ "epoch": 0.3589865777142403,
797
+ "grad_norm": 1.2554454803466797,
798
+ "learning_rate": 1.6187669770494867e-05,
799
+ "loss": 0.5008,
800
+ "step": 565
801
+ },
802
+ {
803
+ "epoch": 0.3621634500833929,
804
+ "grad_norm": 1.2687321901321411,
805
+ "learning_rate": 1.6100083400482197e-05,
806
+ "loss": 0.5019,
807
+ "step": 570
808
+ },
809
+ {
810
+ "epoch": 0.3653403224525455,
811
+ "grad_norm": 1.148877501487732,
812
+ "learning_rate": 1.6011745306865726e-05,
813
+ "loss": 0.5094,
814
+ "step": 575
815
+ },
816
+ {
817
+ "epoch": 0.36851719482169804,
818
+ "grad_norm": 1.1435184478759766,
819
+ "learning_rate": 1.5922666375698275e-05,
820
+ "loss": 0.513,
821
+ "step": 580
822
+ },
823
+ {
824
+ "epoch": 0.37169406719085063,
825
+ "grad_norm": 1.151990294456482,
826
+ "learning_rate": 1.583285758432732e-05,
827
+ "loss": 0.4866,
828
+ "step": 585
829
+ },
830
+ {
831
+ "epoch": 0.37487093956000317,
832
+ "grad_norm": 1.1544941663742065,
833
+ "learning_rate": 1.574233000004226e-05,
834
+ "loss": 0.4835,
835
+ "step": 590
836
+ },
837
+ {
838
+ "epoch": 0.37804781192915576,
839
+ "grad_norm": 1.1831696033477783,
840
+ "learning_rate": 1.5651094778710548e-05,
841
+ "loss": 0.4941,
842
+ "step": 595
843
+ },
844
+ {
845
+ "epoch": 0.3812246842983083,
846
+ "grad_norm": 1.1588399410247803,
847
+ "learning_rate": 1.5559163163402953e-05,
848
+ "loss": 0.4891,
849
+ "step": 600
850
+ },
851
+ {
852
+ "epoch": 0.3844015566674609,
853
+ "grad_norm": 1.0901782512664795,
854
+ "learning_rate": 1.5466546483008057e-05,
855
+ "loss": 0.4954,
856
+ "step": 605
857
+ },
858
+ {
859
+ "epoch": 0.38757842903661344,
860
+ "grad_norm": 1.1416994333267212,
861
+ "learning_rate": 1.5373256150836168e-05,
862
+ "loss": 0.5006,
863
+ "step": 610
864
+ },
865
+ {
866
+ "epoch": 0.39075530140576603,
867
+ "grad_norm": 1.2424296140670776,
868
+ "learning_rate": 1.527930366321284e-05,
869
+ "loss": 0.4867,
870
+ "step": 615
871
+ },
872
+ {
873
+ "epoch": 0.39393217377491857,
874
+ "grad_norm": 1.2324466705322266,
875
+ "learning_rate": 1.5184700598062172e-05,
876
+ "loss": 0.5112,
877
+ "step": 620
878
+ },
879
+ {
880
+ "epoch": 0.39710904614407116,
881
+ "grad_norm": 1.193036675453186,
882
+ "learning_rate": 1.508945861348003e-05,
883
+ "loss": 0.4907,
884
+ "step": 625
885
+ },
886
+ {
887
+ "epoch": 0.4002859185132237,
888
+ "grad_norm": 1.25301992893219,
889
+ "learning_rate": 1.4993589446297396e-05,
890
+ "loss": 0.4811,
891
+ "step": 630
892
+ },
893
+ {
894
+ "epoch": 0.4034627908823763,
895
+ "grad_norm": 1.3160258531570435,
896
+ "learning_rate": 1.4897104910634035e-05,
897
+ "loss": 0.4873,
898
+ "step": 635
899
+ },
900
+ {
901
+ "epoch": 0.4066396632515289,
902
+ "grad_norm": 1.1781983375549316,
903
+ "learning_rate": 1.4800016896442606e-05,
904
+ "loss": 0.5187,
905
+ "step": 640
906
+ },
907
+ {
908
+ "epoch": 0.40981653562068143,
909
+ "grad_norm": 1.2555766105651855,
910
+ "learning_rate": 1.4702337368043452e-05,
911
+ "loss": 0.5007,
912
+ "step": 645
913
+ },
914
+ {
915
+ "epoch": 0.412993407989834,
916
+ "grad_norm": 1.3068451881408691,
917
+ "learning_rate": 1.4604078362650212e-05,
918
+ "loss": 0.491,
919
+ "step": 650
920
+ },
921
+ {
922
+ "epoch": 0.41617028035898657,
923
+ "grad_norm": 1.1431891918182373,
924
+ "learning_rate": 1.4505251988886455e-05,
925
+ "loss": 0.4887,
926
+ "step": 655
927
+ },
928
+ {
929
+ "epoch": 0.41934715272813916,
930
+ "grad_norm": 1.1333122253417969,
931
+ "learning_rate": 1.4405870425293518e-05,
932
+ "loss": 0.489,
933
+ "step": 660
934
+ },
935
+ {
936
+ "epoch": 0.4225240250972917,
937
+ "grad_norm": 1.1263874769210815,
938
+ "learning_rate": 1.430594591882971e-05,
939
+ "loss": 0.4832,
940
+ "step": 665
941
+ },
942
+ {
943
+ "epoch": 0.4257008974664443,
944
+ "grad_norm": 1.0670287609100342,
945
+ "learning_rate": 1.420549078336113e-05,
946
+ "loss": 0.5105,
947
+ "step": 670
948
+ },
949
+ {
950
+ "epoch": 0.42887776983559683,
951
+ "grad_norm": 1.1833176612854004,
952
+ "learning_rate": 1.4104517398144162e-05,
953
+ "loss": 0.5155,
954
+ "step": 675
955
+ },
956
+ {
957
+ "epoch": 0.43205464220474943,
958
+ "grad_norm": 1.251916766166687,
959
+ "learning_rate": 1.40030382063e-05,
960
+ "loss": 0.4977,
961
+ "step": 680
962
+ },
963
+ {
964
+ "epoch": 0.43523151457390197,
965
+ "grad_norm": 1.0563840866088867,
966
+ "learning_rate": 1.3901065713281248e-05,
967
+ "loss": 0.4783,
968
+ "step": 685
969
+ },
970
+ {
971
+ "epoch": 0.43840838694305456,
972
+ "grad_norm": 1.0980114936828613,
973
+ "learning_rate": 1.3798612485330834e-05,
974
+ "loss": 0.4698,
975
+ "step": 690
976
+ },
977
+ {
978
+ "epoch": 0.44158525931220716,
979
+ "grad_norm": 1.427857518196106,
980
+ "learning_rate": 1.3695691147933475e-05,
981
+ "loss": 0.5045,
982
+ "step": 695
983
+ },
984
+ {
985
+ "epoch": 0.4447621316813597,
986
+ "grad_norm": 1.2345526218414307,
987
+ "learning_rate": 1.3592314384259809e-05,
988
+ "loss": 0.5005,
989
+ "step": 700
990
+ },
991
+ {
992
+ "epoch": 0.4479390040505123,
993
+ "grad_norm": 1.2202253341674805,
994
+ "learning_rate": 1.3488494933603418e-05,
995
+ "loss": 0.4712,
996
+ "step": 705
997
+ },
998
+ {
999
+ "epoch": 0.45111587641966483,
1000
+ "grad_norm": 1.1247138977050781,
1001
+ "learning_rate": 1.3384245589810955e-05,
1002
+ "loss": 0.4886,
1003
+ "step": 710
1004
+ },
1005
+ {
1006
+ "epoch": 0.4542927487888174,
1007
+ "grad_norm": 1.2570569515228271,
1008
+ "learning_rate": 1.3279579199705537e-05,
1009
+ "loss": 0.4849,
1010
+ "step": 715
1011
+ },
1012
+ {
1013
+ "epoch": 0.45746962115796996,
1014
+ "grad_norm": 1.1821649074554443,
1015
+ "learning_rate": 1.3174508661503591e-05,
1016
+ "loss": 0.4773,
1017
+ "step": 720
1018
+ },
1019
+ {
1020
+ "epoch": 0.46064649352712256,
1021
+ "grad_norm": 1.215633749961853,
1022
+ "learning_rate": 1.306904692322541e-05,
1023
+ "loss": 0.49,
1024
+ "step": 725
1025
+ },
1026
+ {
1027
+ "epoch": 0.4638233658962751,
1028
+ "grad_norm": 1.062605857849121,
1029
+ "learning_rate": 1.2963206981099528e-05,
1030
+ "loss": 0.4886,
1031
+ "step": 730
1032
+ },
1033
+ {
1034
+ "epoch": 0.4670002382654277,
1035
+ "grad_norm": 1.2538633346557617,
1036
+ "learning_rate": 1.2857001877961181e-05,
1037
+ "loss": 0.4874,
1038
+ "step": 735
1039
+ },
1040
+ {
1041
+ "epoch": 0.47017711063458023,
1042
+ "grad_norm": 1.1429924964904785,
1043
+ "learning_rate": 1.2750444701645013e-05,
1044
+ "loss": 0.4954,
1045
+ "step": 740
1046
+ },
1047
+ {
1048
+ "epoch": 0.4733539830037328,
1049
+ "grad_norm": 1.1001482009887695,
1050
+ "learning_rate": 1.264354858337225e-05,
1051
+ "loss": 0.4913,
1052
+ "step": 745
1053
+ },
1054
+ {
1055
+ "epoch": 0.4765308553728854,
1056
+ "grad_norm": 1.1915541887283325,
1057
+ "learning_rate": 1.25363266961325e-05,
1058
+ "loss": 0.4925,
1059
+ "step": 750
1060
+ },
1061
+ {
1062
+ "epoch": 0.47970772774203796,
1063
+ "grad_norm": 1.0904185771942139,
1064
+ "learning_rate": 1.242879225306043e-05,
1065
+ "loss": 0.461,
1066
+ "step": 755
1067
+ },
1068
+ {
1069
+ "epoch": 0.48288460011119055,
1070
+ "grad_norm": 1.0332921743392944,
1071
+ "learning_rate": 1.232095850580751e-05,
1072
+ "loss": 0.4575,
1073
+ "step": 760
1074
+ },
1075
+ {
1076
+ "epoch": 0.4860614724803431,
1077
+ "grad_norm": 1.1236475706100464,
1078
+ "learning_rate": 1.221283874290894e-05,
1079
+ "loss": 0.4813,
1080
+ "step": 765
1081
+ },
1082
+ {
1083
+ "epoch": 0.4892383448494957,
1084
+ "grad_norm": 1.1378127336502075,
1085
+ "learning_rate": 1.2104446288146143e-05,
1086
+ "loss": 0.4574,
1087
+ "step": 770
1088
+ },
1089
+ {
1090
+ "epoch": 0.4924152172186482,
1091
+ "grad_norm": 1.0330129861831665,
1092
+ "learning_rate": 1.1995794498904805e-05,
1093
+ "loss": 0.4872,
1094
+ "step": 775
1095
+ },
1096
+ {
1097
+ "epoch": 0.4955920895878008,
1098
+ "grad_norm": 1.2020204067230225,
1099
+ "learning_rate": 1.1886896764528837e-05,
1100
+ "loss": 0.4936,
1101
+ "step": 780
1102
+ },
1103
+ {
1104
+ "epoch": 0.49876896195695336,
1105
+ "grad_norm": 1.129347324371338,
1106
+ "learning_rate": 1.1777766504670397e-05,
1107
+ "loss": 0.4668,
1108
+ "step": 785
1109
+ },
1110
+ {
1111
+ "epoch": 0.501945834326106,
1112
+ "grad_norm": 1.1032615900039673,
1113
+ "learning_rate": 1.1668417167636143e-05,
1114
+ "loss": 0.4953,
1115
+ "step": 790
1116
+ },
1117
+ {
1118
+ "epoch": 0.5051227066952585,
1119
+ "grad_norm": 1.2174361944198608,
1120
+ "learning_rate": 1.1558862228729985e-05,
1121
+ "loss": 0.4856,
1122
+ "step": 795
1123
+ },
1124
+ {
1125
+ "epoch": 0.508299579064411,
1126
+ "grad_norm": 1.0304588079452515,
1127
+ "learning_rate": 1.1449115188592505e-05,
1128
+ "loss": 0.4603,
1129
+ "step": 800
1130
+ },
1131
+ {
1132
+ "epoch": 0.5114764514335637,
1133
+ "grad_norm": 1.1562561988830566,
1134
+ "learning_rate": 1.1339189571537244e-05,
1135
+ "loss": 0.4764,
1136
+ "step": 805
1137
+ },
1138
+ {
1139
+ "epoch": 0.5146533238027162,
1140
+ "grad_norm": 1.1028969287872314,
1141
+ "learning_rate": 1.1229098923884065e-05,
1142
+ "loss": 0.4614,
1143
+ "step": 810
1144
+ },
1145
+ {
1146
+ "epoch": 0.5178301961718688,
1147
+ "grad_norm": 1.118483304977417,
1148
+ "learning_rate": 1.1118856812289856e-05,
1149
+ "loss": 0.4934,
1150
+ "step": 815
1151
+ },
1152
+ {
1153
+ "epoch": 0.5210070685410214,
1154
+ "grad_norm": 1.1935844421386719,
1155
+ "learning_rate": 1.1008476822076638e-05,
1156
+ "loss": 0.4737,
1157
+ "step": 820
1158
+ },
1159
+ {
1160
+ "epoch": 0.524183940910174,
1161
+ "grad_norm": 1.1401269435882568,
1162
+ "learning_rate": 1.0897972555557465e-05,
1163
+ "loss": 0.4918,
1164
+ "step": 825
1165
+ },
1166
+ {
1167
+ "epoch": 0.5273608132793265,
1168
+ "grad_norm": 1.0230424404144287,
1169
+ "learning_rate": 1.0787357630360163e-05,
1170
+ "loss": 0.462,
1171
+ "step": 830
1172
+ },
1173
+ {
1174
+ "epoch": 0.530537685648479,
1175
+ "grad_norm": 1.0743178129196167,
1176
+ "learning_rate": 1.0676645677749215e-05,
1177
+ "loss": 0.4995,
1178
+ "step": 835
1179
+ },
1180
+ {
1181
+ "epoch": 0.5337145580176317,
1182
+ "grad_norm": 1.170649766921997,
1183
+ "learning_rate": 1.0565850340945955e-05,
1184
+ "loss": 0.4951,
1185
+ "step": 840
1186
+ },
1187
+ {
1188
+ "epoch": 0.5368914303867842,
1189
+ "grad_norm": 1.068259835243225,
1190
+ "learning_rate": 1.04549852734473e-05,
1191
+ "loss": 0.4667,
1192
+ "step": 845
1193
+ },
1194
+ {
1195
+ "epoch": 0.5400683027559368,
1196
+ "grad_norm": 1.168420433998108,
1197
+ "learning_rate": 1.0344064137343187e-05,
1198
+ "loss": 0.4548,
1199
+ "step": 850
1200
+ },
1201
+ {
1202
+ "epoch": 0.5432451751250893,
1203
+ "grad_norm": 1.1319665908813477,
1204
+ "learning_rate": 1.0233100601632986e-05,
1205
+ "loss": 0.4744,
1206
+ "step": 855
1207
+ },
1208
+ {
1209
+ "epoch": 0.546422047494242,
1210
+ "grad_norm": 1.0778429508209229,
1211
+ "learning_rate": 1.0122108340541053e-05,
1212
+ "loss": 0.4674,
1213
+ "step": 860
1214
+ },
1215
+ {
1216
+ "epoch": 0.5495989198633945,
1217
+ "grad_norm": 1.0879789590835571,
1218
+ "learning_rate": 1.0011101031831604e-05,
1219
+ "loss": 0.4536,
1220
+ "step": 865
1221
+ },
1222
+ {
1223
+ "epoch": 0.552775792232547,
1224
+ "grad_norm": 1.0822393894195557,
1225
+ "learning_rate": 9.90009235512321e-06,
1226
+ "loss": 0.4662,
1227
+ "step": 870
1228
+ },
1229
+ {
1230
+ "epoch": 0.5559526646016997,
1231
+ "grad_norm": 1.0387858152389526,
1232
+ "learning_rate": 9.789095990203025e-06,
1233
+ "loss": 0.4438,
1234
+ "step": 875
1235
+ },
1236
+ {
1237
+ "epoch": 0.5591295369708522,
1238
+ "grad_norm": 1.1683969497680664,
1239
+ "learning_rate": 9.678125615340986e-06,
1240
+ "loss": 0.4834,
1241
+ "step": 880
1242
+ },
1243
+ {
1244
+ "epoch": 0.5623064093400048,
1245
+ "grad_norm": 1.0404331684112549,
1246
+ "learning_rate": 9.567194905604245e-06,
1247
+ "loss": 0.4651,
1248
+ "step": 885
1249
+ },
1250
+ {
1251
+ "epoch": 0.5654832817091573,
1252
+ "grad_norm": 0.9641637802124023,
1253
+ "learning_rate": 9.456317531171947e-06,
1254
+ "loss": 0.4808,
1255
+ "step": 890
1256
+ },
1257
+ {
1258
+ "epoch": 0.5686601540783099,
1259
+ "grad_norm": 0.9650170207023621,
1260
+ "learning_rate": 9.345507155650645e-06,
1261
+ "loss": 0.4903,
1262
+ "step": 895
1263
+ },
1264
+ {
1265
+ "epoch": 0.5718370264474625,
1266
+ "grad_norm": 1.0568928718566895,
1267
+ "learning_rate": 9.234777434390492e-06,
1268
+ "loss": 0.4553,
1269
+ "step": 900
1270
+ },
1271
+ {
1272
+ "epoch": 0.575013898816615,
1273
+ "grad_norm": 1.1297322511672974,
1274
+ "learning_rate": 9.12414201280248e-06,
1275
+ "loss": 0.4726,
1276
+ "step": 905
1277
+ },
1278
+ {
1279
+ "epoch": 0.5781907711857676,
1280
+ "grad_norm": 1.1371909379959106,
1281
+ "learning_rate": 9.013614524676907e-06,
1282
+ "loss": 0.4639,
1283
+ "step": 910
1284
+ },
1285
+ {
1286
+ "epoch": 0.5813676435549202,
1287
+ "grad_norm": 1.0769912004470825,
1288
+ "learning_rate": 8.90320859050323e-06,
1289
+ "loss": 0.4587,
1290
+ "step": 915
1291
+ },
1292
+ {
1293
+ "epoch": 0.5845445159240727,
1294
+ "grad_norm": 1.187941551208496,
1295
+ "learning_rate": 8.792937815791624e-06,
1296
+ "loss": 0.4551,
1297
+ "step": 920
1298
+ },
1299
+ {
1300
+ "epoch": 0.5877213882932253,
1301
+ "grad_norm": 1.0256364345550537,
1302
+ "learning_rate": 8.682815789396318e-06,
1303
+ "loss": 0.4703,
1304
+ "step": 925
1305
+ },
1306
+ {
1307
+ "epoch": 0.5908982606623779,
1308
+ "grad_norm": 1.176479458808899,
1309
+ "learning_rate": 8.57285608184104e-06,
1310
+ "loss": 0.471,
1311
+ "step": 930
1312
+ },
1313
+ {
1314
+ "epoch": 0.5940751330315305,
1315
+ "grad_norm": 0.9811561107635498,
1316
+ "learning_rate": 8.4630722436467e-06,
1317
+ "loss": 0.4924,
1318
+ "step": 935
1319
+ },
1320
+ {
1321
+ "epoch": 0.597252005400683,
1322
+ "grad_norm": 1.0429517030715942,
1323
+ "learning_rate": 8.353477803661526e-06,
1324
+ "loss": 0.4565,
1325
+ "step": 940
1326
+ },
1327
+ {
1328
+ "epoch": 0.6004288777698356,
1329
+ "grad_norm": 1.0858372449874878,
1330
+ "learning_rate": 8.24408626739387e-06,
1331
+ "loss": 0.4519,
1332
+ "step": 945
1333
+ },
1334
+ {
1335
+ "epoch": 0.6036057501389882,
1336
+ "grad_norm": 1.1124157905578613,
1337
+ "learning_rate": 8.134911115347934e-06,
1338
+ "loss": 0.4947,
1339
+ "step": 950
1340
+ },
1341
+ {
1342
+ "epoch": 0.6067826225081407,
1343
+ "grad_norm": 1.1018826961517334,
1344
+ "learning_rate": 8.02596580136252e-06,
1345
+ "loss": 0.4721,
1346
+ "step": 955
1347
+ },
1348
+ {
1349
+ "epoch": 0.6099594948772933,
1350
+ "grad_norm": 1.2431491613388062,
1351
+ "learning_rate": 7.917263750953092e-06,
1352
+ "loss": 0.4765,
1353
+ "step": 960
1354
+ },
1355
+ {
1356
+ "epoch": 0.6131363672464458,
1357
+ "grad_norm": 1.1556727886199951,
1358
+ "learning_rate": 7.80881835965734e-06,
1359
+ "loss": 0.4622,
1360
+ "step": 965
1361
+ },
1362
+ {
1363
+ "epoch": 0.6163132396155985,
1364
+ "grad_norm": 1.1924182176589966,
1365
+ "learning_rate": 7.700642991384407e-06,
1366
+ "loss": 0.484,
1367
+ "step": 970
1368
+ },
1369
+ {
1370
+ "epoch": 0.619490111984751,
1371
+ "grad_norm": 1.068928599357605,
1372
+ "learning_rate": 7.592750976768048e-06,
1373
+ "loss": 0.4538,
1374
+ "step": 975
1375
+ },
1376
+ {
1377
+ "epoch": 0.6226669843539036,
1378
+ "grad_norm": 1.0944935083389282,
1379
+ "learning_rate": 7.485155611523869e-06,
1380
+ "loss": 0.4763,
1381
+ "step": 980
1382
+ },
1383
+ {
1384
+ "epoch": 0.6258438567230562,
1385
+ "grad_norm": 0.954535961151123,
1386
+ "learning_rate": 7.377870154810869e-06,
1387
+ "loss": 0.4719,
1388
+ "step": 985
1389
+ },
1390
+ {
1391
+ "epoch": 0.6290207290922087,
1392
+ "grad_norm": 1.132608413696289,
1393
+ "learning_rate": 7.270907827597487e-06,
1394
+ "loss": 0.4548,
1395
+ "step": 990
1396
+ },
1397
+ {
1398
+ "epoch": 0.6321976014613613,
1399
+ "grad_norm": 1.0536706447601318,
1400
+ "learning_rate": 7.16428181103238e-06,
1401
+ "loss": 0.4558,
1402
+ "step": 995
1403
+ },
1404
+ {
1405
+ "epoch": 0.6353744738305138,
1406
+ "grad_norm": 1.074761986732483,
1407
+ "learning_rate": 7.058005244820068e-06,
1408
+ "loss": 0.4838,
1409
+ "step": 1000
1410
+ },
1411
+ {
1412
+ "epoch": 0.6385513461996665,
1413
+ "grad_norm": 1.0573989152908325,
1414
+ "learning_rate": 6.952091225601713e-06,
1415
+ "loss": 0.4491,
1416
+ "step": 1005
1417
+ },
1418
+ {
1419
+ "epoch": 0.641728218568819,
1420
+ "grad_norm": 1.0783993005752563,
1421
+ "learning_rate": 6.846552805341194e-06,
1422
+ "loss": 0.4525,
1423
+ "step": 1010
1424
+ },
1425
+ {
1426
+ "epoch": 0.6449050909379715,
1427
+ "grad_norm": 1.0637626647949219,
1428
+ "learning_rate": 6.7414029897167e-06,
1429
+ "loss": 0.4771,
1430
+ "step": 1015
1431
+ },
1432
+ {
1433
+ "epoch": 0.6480819633071241,
1434
+ "grad_norm": 1.1191637516021729,
1435
+ "learning_rate": 6.636654736518007e-06,
1436
+ "loss": 0.4574,
1437
+ "step": 1020
1438
+ },
1439
+ {
1440
+ "epoch": 0.6512588356762767,
1441
+ "grad_norm": 1.099088430404663,
1442
+ "learning_rate": 6.532320954049682e-06,
1443
+ "loss": 0.4604,
1444
+ "step": 1025
1445
+ },
1446
+ {
1447
+ "epoch": 0.6544357080454293,
1448
+ "grad_norm": 1.058421015739441,
1449
+ "learning_rate": 6.4284144995403565e-06,
1450
+ "loss": 0.4469,
1451
+ "step": 1030
1452
+ },
1453
+ {
1454
+ "epoch": 0.6576125804145818,
1455
+ "grad_norm": 1.0653492212295532,
1456
+ "learning_rate": 6.324948177558307e-06,
1457
+ "loss": 0.4554,
1458
+ "step": 1035
1459
+ },
1460
+ {
1461
+ "epoch": 0.6607894527837345,
1462
+ "grad_norm": 1.049944519996643,
1463
+ "learning_rate": 6.2219347384335505e-06,
1464
+ "loss": 0.4835,
1465
+ "step": 1040
1466
+ },
1467
+ {
1468
+ "epoch": 0.663966325152887,
1469
+ "grad_norm": 1.0621883869171143,
1470
+ "learning_rate": 6.119386876686571e-06,
1471
+ "loss": 0.463,
1472
+ "step": 1045
1473
+ },
1474
+ {
1475
+ "epoch": 0.6671431975220395,
1476
+ "grad_norm": 1.0801547765731812,
1477
+ "learning_rate": 6.017317229463968e-06,
1478
+ "loss": 0.4681,
1479
+ "step": 1050
1480
+ },
1481
+ {
1482
+ "epoch": 0.6703200698911921,
1483
+ "grad_norm": 1.023689866065979,
1484
+ "learning_rate": 5.91573837498115e-06,
1485
+ "loss": 0.4587,
1486
+ "step": 1055
1487
+ },
1488
+ {
1489
+ "epoch": 0.6734969422603447,
1490
+ "grad_norm": 1.0890988111495972,
1491
+ "learning_rate": 5.8146628309723155e-06,
1492
+ "loss": 0.4363,
1493
+ "step": 1060
1494
+ },
1495
+ {
1496
+ "epoch": 0.6766738146294973,
1497
+ "grad_norm": 1.0633463859558105,
1498
+ "learning_rate": 5.714103053147852e-06,
1499
+ "loss": 0.4443,
1500
+ "step": 1065
1501
+ },
1502
+ {
1503
+ "epoch": 0.6798506869986498,
1504
+ "grad_norm": 1.1121097803115845,
1505
+ "learning_rate": 5.6140714336594086e-06,
1506
+ "loss": 0.4563,
1507
+ "step": 1070
1508
+ },
1509
+ {
1510
+ "epoch": 0.6830275593678024,
1511
+ "grad_norm": 1.051448106765747,
1512
+ "learning_rate": 5.514580299572801e-06,
1513
+ "loss": 0.4478,
1514
+ "step": 1075
1515
+ },
1516
+ {
1517
+ "epoch": 0.686204431736955,
1518
+ "grad_norm": 1.077275037765503,
1519
+ "learning_rate": 5.415641911348893e-06,
1520
+ "loss": 0.4798,
1521
+ "step": 1080
1522
+ },
1523
+ {
1524
+ "epoch": 0.6893813041061075,
1525
+ "grad_norm": 1.1081876754760742,
1526
+ "learning_rate": 5.31726846133275e-06,
1527
+ "loss": 0.4511,
1528
+ "step": 1085
1529
+ },
1530
+ {
1531
+ "epoch": 0.6925581764752601,
1532
+ "grad_norm": 1.0196533203125,
1533
+ "learning_rate": 5.219472072251154e-06,
1534
+ "loss": 0.4598,
1535
+ "step": 1090
1536
+ },
1537
+ {
1538
+ "epoch": 0.6957350488444127,
1539
+ "grad_norm": 1.0347778797149658,
1540
+ "learning_rate": 5.12226479571868e-06,
1541
+ "loss": 0.4458,
1542
+ "step": 1095
1543
+ },
1544
+ {
1545
+ "epoch": 0.6989119212135653,
1546
+ "grad_norm": 1.0776883363723755,
1547
+ "learning_rate": 5.025658610752568e-06,
1548
+ "loss": 0.4322,
1549
+ "step": 1100
1550
+ },
1551
+ {
1552
+ "epoch": 0.7020887935827178,
1553
+ "grad_norm": 1.0258809328079224,
1554
+ "learning_rate": 4.929665422296532e-06,
1555
+ "loss": 0.4376,
1556
+ "step": 1105
1557
+ },
1558
+ {
1559
+ "epoch": 0.7052656659518703,
1560
+ "grad_norm": 1.0535441637039185,
1561
+ "learning_rate": 4.834297059753682e-06,
1562
+ "loss": 0.4496,
1563
+ "step": 1110
1564
+ },
1565
+ {
1566
+ "epoch": 0.708442538321023,
1567
+ "grad_norm": 1.0777946710586548,
1568
+ "learning_rate": 4.739565275528773e-06,
1569
+ "loss": 0.455,
1570
+ "step": 1115
1571
+ },
1572
+ {
1573
+ "epoch": 0.7116194106901755,
1574
+ "grad_norm": 1.0707253217697144,
1575
+ "learning_rate": 4.645481743579949e-06,
1576
+ "loss": 0.4795,
1577
+ "step": 1120
1578
+ },
1579
+ {
1580
+ "epoch": 0.7147962830593281,
1581
+ "grad_norm": 0.963762640953064,
1582
+ "learning_rate": 4.55205805798011e-06,
1583
+ "loss": 0.4429,
1584
+ "step": 1125
1585
+ },
1586
+ {
1587
+ "epoch": 0.7179731554284806,
1588
+ "grad_norm": 1.0962485074996948,
1589
+ "learning_rate": 4.45930573148818e-06,
1590
+ "loss": 0.494,
1591
+ "step": 1130
1592
+ },
1593
+ {
1594
+ "epoch": 0.7211500277976333,
1595
+ "grad_norm": 1.0998930931091309,
1596
+ "learning_rate": 4.367236194130375e-06,
1597
+ "loss": 0.4401,
1598
+ "step": 1135
1599
+ },
1600
+ {
1601
+ "epoch": 0.7243269001667858,
1602
+ "grad_norm": 0.9984025955200195,
1603
+ "learning_rate": 4.275860791791638e-06,
1604
+ "loss": 0.4433,
1605
+ "step": 1140
1606
+ },
1607
+ {
1608
+ "epoch": 0.7275037725359383,
1609
+ "grad_norm": 1.0686578750610352,
1610
+ "learning_rate": 4.185190784817478e-06,
1611
+ "loss": 0.4553,
1612
+ "step": 1145
1613
+ },
1614
+ {
1615
+ "epoch": 0.730680644905091,
1616
+ "grad_norm": 1.015057921409607,
1617
+ "learning_rate": 4.095237346626345e-06,
1618
+ "loss": 0.4366,
1619
+ "step": 1150
1620
+ },
1621
+ {
1622
+ "epoch": 0.7338575172742435,
1623
+ "grad_norm": 1.0694704055786133,
1624
+ "learning_rate": 4.006011562332702e-06,
1625
+ "loss": 0.4503,
1626
+ "step": 1155
1627
+ },
1628
+ {
1629
+ "epoch": 0.7370343896433961,
1630
+ "grad_norm": 1.125226616859436,
1631
+ "learning_rate": 3.917524427380992e-06,
1632
+ "loss": 0.4532,
1633
+ "step": 1160
1634
+ },
1635
+ {
1636
+ "epoch": 0.7402112620125486,
1637
+ "grad_norm": 1.087633490562439,
1638
+ "learning_rate": 3.829786846190648e-06,
1639
+ "loss": 0.456,
1640
+ "step": 1165
1641
+ },
1642
+ {
1643
+ "epoch": 0.7433881343817013,
1644
+ "grad_norm": 1.0903210639953613,
1645
+ "learning_rate": 3.742809630812322e-06,
1646
+ "loss": 0.4406,
1647
+ "step": 1170
1648
+ },
1649
+ {
1650
+ "epoch": 0.7465650067508538,
1651
+ "grad_norm": 1.1029974222183228,
1652
+ "learning_rate": 3.6566034995955e-06,
1653
+ "loss": 0.4549,
1654
+ "step": 1175
1655
+ },
1656
+ {
1657
+ "epoch": 0.7497418791200063,
1658
+ "grad_norm": 1.0449450016021729,
1659
+ "learning_rate": 3.571179075867671e-06,
1660
+ "loss": 0.4613,
1661
+ "step": 1180
1662
+ },
1663
+ {
1664
+ "epoch": 0.7529187514891589,
1665
+ "grad_norm": 1.0384024381637573,
1666
+ "learning_rate": 3.4865468866251794e-06,
1667
+ "loss": 0.464,
1668
+ "step": 1185
1669
+ },
1670
+ {
1671
+ "epoch": 0.7560956238583115,
1672
+ "grad_norm": 1.0278702974319458,
1673
+ "learning_rate": 3.402717361235961e-06,
1674
+ "loss": 0.4568,
1675
+ "step": 1190
1676
+ },
1677
+ {
1678
+ "epoch": 0.7592724962274641,
1679
+ "grad_norm": 1.0673890113830566,
1680
+ "learning_rate": 3.3197008301543497e-06,
1681
+ "loss": 0.4594,
1682
+ "step": 1195
1683
+ },
1684
+ {
1685
+ "epoch": 0.7624493685966166,
1686
+ "grad_norm": 1.0114554166793823,
1687
+ "learning_rate": 3.2375075236480003e-06,
1688
+ "loss": 0.4482,
1689
+ "step": 1200
1690
+ },
1691
+ {
1692
+ "epoch": 0.7656262409657691,
1693
+ "grad_norm": 1.101015329360962,
1694
+ "learning_rate": 3.156147570537209e-06,
1695
+ "loss": 0.4596,
1696
+ "step": 1205
1697
+ },
1698
+ {
1699
+ "epoch": 0.7688031133349218,
1700
+ "grad_norm": 1.1032803058624268,
1701
+ "learning_rate": 3.075630996946729e-06,
1702
+ "loss": 0.4442,
1703
+ "step": 1210
1704
+ },
1705
+ {
1706
+ "epoch": 0.7719799857040743,
1707
+ "grad_norm": 1.0375980138778687,
1708
+ "learning_rate": 2.9959677250702223e-06,
1709
+ "loss": 0.4511,
1710
+ "step": 1215
1711
+ },
1712
+ {
1713
+ "epoch": 0.7751568580732269,
1714
+ "grad_norm": 1.0073593854904175,
1715
+ "learning_rate": 2.9171675719475355e-06,
1716
+ "loss": 0.4384,
1717
+ "step": 1220
1718
+ },
1719
+ {
1720
+ "epoch": 0.7783337304423795,
1721
+ "grad_norm": 1.045289158821106,
1722
+ "learning_rate": 2.8392402482549397e-06,
1723
+ "loss": 0.4719,
1724
+ "step": 1225
1725
+ },
1726
+ {
1727
+ "epoch": 0.7815106028115321,
1728
+ "grad_norm": 0.984451949596405,
1729
+ "learning_rate": 2.762195357108448e-06,
1730
+ "loss": 0.4386,
1731
+ "step": 1230
1732
+ },
1733
+ {
1734
+ "epoch": 0.7846874751806846,
1735
+ "grad_norm": 1.0313149690628052,
1736
+ "learning_rate": 2.6860423928804135e-06,
1737
+ "loss": 0.4381,
1738
+ "step": 1235
1739
+ },
1740
+ {
1741
+ "epoch": 0.7878643475498371,
1742
+ "grad_norm": 1.0065529346466064,
1743
+ "learning_rate": 2.6107907400295385e-06,
1744
+ "loss": 0.467,
1745
+ "step": 1240
1746
+ },
1747
+ {
1748
+ "epoch": 0.7910412199189898,
1749
+ "grad_norm": 1.0645593404769897,
1750
+ "learning_rate": 2.53644967194439e-06,
1751
+ "loss": 0.45,
1752
+ "step": 1245
1753
+ },
1754
+ {
1755
+ "epoch": 0.7942180922881423,
1756
+ "grad_norm": 0.991398811340332,
1757
+ "learning_rate": 2.4630283498006323e-06,
1758
+ "loss": 0.4583,
1759
+ "step": 1250
1760
+ },
1761
+ {
1762
+ "epoch": 0.7973949646572949,
1763
+ "grad_norm": 0.9970043897628784,
1764
+ "learning_rate": 2.390535821432084e-06,
1765
+ "loss": 0.4438,
1766
+ "step": 1255
1767
+ },
1768
+ {
1769
+ "epoch": 0.8005718370264474,
1770
+ "grad_norm": 1.015313744544983,
1771
+ "learning_rate": 2.3189810202157337e-06,
1772
+ "loss": 0.4797,
1773
+ "step": 1260
1774
+ },
1775
+ {
1776
+ "epoch": 0.8037487093956001,
1777
+ "grad_norm": 1.107275128364563,
1778
+ "learning_rate": 2.2483727639708606e-06,
1779
+ "loss": 0.4594,
1780
+ "step": 1265
1781
+ },
1782
+ {
1783
+ "epoch": 0.8069255817647526,
1784
+ "grad_norm": 1.0633456707000732,
1785
+ "learning_rate": 2.1787197538724147e-06,
1786
+ "loss": 0.4462,
1787
+ "step": 1270
1788
+ },
1789
+ {
1790
+ "epoch": 0.8101024541339051,
1791
+ "grad_norm": 1.0543006658554077,
1792
+ "learning_rate": 2.1100305733787406e-06,
1793
+ "loss": 0.4622,
1794
+ "step": 1275
1795
+ },
1796
+ {
1797
+ "epoch": 0.8132793265030578,
1798
+ "grad_norm": 1.0409566164016724,
1799
+ "learning_rate": 2.0423136871738227e-06,
1800
+ "loss": 0.4397,
1801
+ "step": 1280
1802
+ },
1803
+ {
1804
+ "epoch": 0.8164561988722103,
1805
+ "grad_norm": 1.0549768209457397,
1806
+ "learning_rate": 1.9755774401241866e-06,
1807
+ "loss": 0.4426,
1808
+ "step": 1285
1809
+ },
1810
+ {
1811
+ "epoch": 0.8196330712413629,
1812
+ "grad_norm": 1.0367543697357178,
1813
+ "learning_rate": 1.9098300562505266e-06,
1814
+ "loss": 0.4435,
1815
+ "step": 1290
1816
+ },
1817
+ {
1818
+ "epoch": 0.8228099436105154,
1819
+ "grad_norm": 1.0637731552124023,
1820
+ "learning_rate": 1.8450796377142566e-06,
1821
+ "loss": 0.4147,
1822
+ "step": 1295
1823
+ },
1824
+ {
1825
+ "epoch": 0.825986815979668,
1826
+ "grad_norm": 1.0210437774658203,
1827
+ "learning_rate": 1.781334163819064e-06,
1828
+ "loss": 0.479,
1829
+ "step": 1300
1830
+ },
1831
+ {
1832
+ "epoch": 0.8291636883488206,
1833
+ "grad_norm": 1.0538122653961182,
1834
+ "learning_rate": 1.718601490027606e-06,
1835
+ "loss": 0.4366,
1836
+ "step": 1305
1837
+ },
1838
+ {
1839
+ "epoch": 0.8323405607179731,
1840
+ "grad_norm": 1.0405868291854858,
1841
+ "learning_rate": 1.6568893469934666e-06,
1842
+ "loss": 0.4342,
1843
+ "step": 1310
1844
+ },
1845
+ {
1846
+ "epoch": 0.8355174330871257,
1847
+ "grad_norm": 1.0490772724151611,
1848
+ "learning_rate": 1.5962053396085075e-06,
1849
+ "loss": 0.4526,
1850
+ "step": 1315
1851
+ },
1852
+ {
1853
+ "epoch": 0.8386943054562783,
1854
+ "grad_norm": 1.0285438299179077,
1855
+ "learning_rate": 1.5365569460656793e-06,
1856
+ "loss": 0.4542,
1857
+ "step": 1320
1858
+ },
1859
+ {
1860
+ "epoch": 0.8418711778254309,
1861
+ "grad_norm": 1.1192095279693604,
1862
+ "learning_rate": 1.4779515169374914e-06,
1863
+ "loss": 0.4391,
1864
+ "step": 1325
1865
+ },
1866
+ {
1867
+ "epoch": 0.8450480501945834,
1868
+ "grad_norm": 0.988335371017456,
1869
+ "learning_rate": 1.4203962742701893e-06,
1870
+ "loss": 0.4377,
1871
+ "step": 1330
1872
+ },
1873
+ {
1874
+ "epoch": 0.848224922563736,
1875
+ "grad_norm": 1.085839033126831,
1876
+ "learning_rate": 1.3638983106937543e-06,
1877
+ "loss": 0.4477,
1878
+ "step": 1335
1879
+ },
1880
+ {
1881
+ "epoch": 0.8514017949328886,
1882
+ "grad_norm": 0.9356504678726196,
1883
+ "learning_rate": 1.3084645885478797e-06,
1884
+ "loss": 0.469,
1885
+ "step": 1340
1886
+ },
1887
+ {
1888
+ "epoch": 0.8545786673020411,
1889
+ "grad_norm": 1.0390148162841797,
1890
+ "learning_rate": 1.254101939023985e-06,
1891
+ "loss": 0.4328,
1892
+ "step": 1345
1893
+ },
1894
+ {
1895
+ "epoch": 0.8577555396711937,
1896
+ "grad_norm": 1.0623959302902222,
1897
+ "learning_rate": 1.2008170613233971e-06,
1898
+ "loss": 0.4422,
1899
+ "step": 1350
1900
+ },
1901
+ {
1902
+ "epoch": 0.8609324120403463,
1903
+ "grad_norm": 1.1521815061569214,
1904
+ "learning_rate": 1.1486165218317957e-06,
1905
+ "loss": 0.4512,
1906
+ "step": 1355
1907
+ },
1908
+ {
1909
+ "epoch": 0.8641092844094989,
1910
+ "grad_norm": 1.0439189672470093,
1911
+ "learning_rate": 1.0975067533100337e-06,
1912
+ "loss": 0.4304,
1913
+ "step": 1360
1914
+ },
1915
+ {
1916
+ "epoch": 0.8672861567786514,
1917
+ "grad_norm": 0.9963186383247375,
1918
+ "learning_rate": 1.0474940541014e-06,
1919
+ "loss": 0.4328,
1920
+ "step": 1365
1921
+ },
1922
+ {
1923
+ "epoch": 0.8704630291478039,
1924
+ "grad_norm": 1.0758447647094727,
1925
+ "learning_rate": 9.9858458735548e-07,
1926
+ "loss": 0.4542,
1927
+ "step": 1370
1928
+ },
1929
+ {
1930
+ "epoch": 0.8736399015169566,
1931
+ "grad_norm": 1.106645941734314,
1932
+ "learning_rate": 9.507843802686623e-07,
1933
+ "loss": 0.448,
1934
+ "step": 1375
1935
+ },
1936
+ {
1937
+ "epoch": 0.8768167738861091,
1938
+ "grad_norm": 1.107141137123108,
1939
+ "learning_rate": 9.040993233413787e-07,
1940
+ "loss": 0.4333,
1941
+ "step": 1380
1942
+ },
1943
+ {
1944
+ "epoch": 0.8799936462552617,
1945
+ "grad_norm": 1.0433176755905151,
1946
+ "learning_rate": 8.585351696522248e-07,
1947
+ "loss": 0.4368,
1948
+ "step": 1385
1949
+ },
1950
+ {
1951
+ "epoch": 0.8831705186244143,
1952
+ "grad_norm": 1.0009626150131226,
1953
+ "learning_rate": 8.140975341489921e-07,
1954
+ "loss": 0.4386,
1955
+ "step": 1390
1956
+ },
1957
+ {
1958
+ "epoch": 0.8863473909935669,
1959
+ "grad_norm": 1.0583575963974,
1960
+ "learning_rate": 7.707918929567282e-07,
1961
+ "loss": 0.4414,
1962
+ "step": 1395
1963
+ },
1964
+ {
1965
+ "epoch": 0.8895242633627194,
1966
+ "grad_norm": 1.043960452079773,
1967
+ "learning_rate": 7.286235827029042e-07,
1968
+ "loss": 0.4434,
1969
+ "step": 1400
1970
+ },
1971
+ {
1972
+ "epoch": 0.8927011357318719,
1973
+ "grad_norm": 0.9781895875930786,
1974
+ "learning_rate": 6.875977998597828e-07,
1975
+ "loss": 0.4473,
1976
+ "step": 1405
1977
+ },
1978
+ {
1979
+ "epoch": 0.8958780081010246,
1980
+ "grad_norm": 0.9682676792144775,
1981
+ "learning_rate": 6.477196001040254e-07,
1982
+ "loss": 0.4325,
1983
+ "step": 1410
1984
+ },
1985
+ {
1986
+ "epoch": 0.8990548804701771,
1987
+ "grad_norm": 0.9957118630409241,
1988
+ "learning_rate": 6.089938976936971e-07,
1989
+ "loss": 0.415,
1990
+ "step": 1415
1991
+ },
1992
+ {
1993
+ "epoch": 0.9022317528393297,
1994
+ "grad_norm": 1.020727276802063,
1995
+ "learning_rate": 5.714254648626639e-07,
1996
+ "loss": 0.4353,
1997
+ "step": 1420
1998
+ },
1999
+ {
2000
+ "epoch": 0.9054086252084822,
2001
+ "grad_norm": 1.0520106554031372,
2002
+ "learning_rate": 5.350189312324993e-07,
2003
+ "loss": 0.4346,
2004
+ "step": 1425
2005
+ },
2006
+ {
2007
+ "epoch": 0.9085854975776348,
2008
+ "grad_norm": 1.0706285238265991,
2009
+ "learning_rate": 4.997787832419699e-07,
2010
+ "loss": 0.4297,
2011
+ "step": 1430
2012
+ },
2013
+ {
2014
+ "epoch": 0.9117623699467874,
2015
+ "grad_norm": 1.1210540533065796,
2016
+ "learning_rate": 4.657093635941701e-07,
2017
+ "loss": 0.4568,
2018
+ "step": 1435
2019
+ },
2020
+ {
2021
+ "epoch": 0.9149392423159399,
2022
+ "grad_norm": 1.1412665843963623,
2023
+ "learning_rate": 4.328148707213564e-07,
2024
+ "loss": 0.454,
2025
+ "step": 1440
2026
+ },
2027
+ {
2028
+ "epoch": 0.9181161146850926,
2029
+ "grad_norm": 1.0113401412963867,
2030
+ "learning_rate": 4.010993582675693e-07,
2031
+ "loss": 0.4604,
2032
+ "step": 1445
2033
+ },
2034
+ {
2035
+ "epoch": 0.9212929870542451,
2036
+ "grad_norm": 0.9700157642364502,
2037
+ "learning_rate": 3.7056673458909953e-07,
2038
+ "loss": 0.4486,
2039
+ "step": 1450
2040
+ },
2041
+ {
2042
+ "epoch": 0.9244698594233977,
2043
+ "grad_norm": 0.950957179069519,
2044
+ "learning_rate": 3.412207622728458e-07,
2045
+ "loss": 0.4198,
2046
+ "step": 1455
2047
+ },
2048
+ {
2049
+ "epoch": 0.9276467317925502,
2050
+ "grad_norm": 0.957328200340271,
2051
+ "learning_rate": 3.130650576726557e-07,
2052
+ "loss": 0.4155,
2053
+ "step": 1460
2054
+ },
2055
+ {
2056
+ "epoch": 0.9308236041617028,
2057
+ "grad_norm": 1.1100578308105469,
2058
+ "learning_rate": 2.861030904636708e-07,
2059
+ "loss": 0.4339,
2060
+ "step": 1465
2061
+ },
2062
+ {
2063
+ "epoch": 0.9340004765308554,
2064
+ "grad_norm": 1.0033955574035645,
2065
+ "learning_rate": 2.603381832147522e-07,
2066
+ "loss": 0.4551,
2067
+ "step": 1470
2068
+ },
2069
+ {
2070
+ "epoch": 0.9371773489000079,
2071
+ "grad_norm": 1.0719983577728271,
2072
+ "learning_rate": 2.3577351097903157e-07,
2073
+ "loss": 0.4368,
2074
+ "step": 1475
2075
+ },
2076
+ {
2077
+ "epoch": 0.9403542212691605,
2078
+ "grad_norm": 1.0672398805618286,
2079
+ "learning_rate": 2.1241210090265697e-07,
2080
+ "loss": 0.4383,
2081
+ "step": 1480
2082
+ },
2083
+ {
2084
+ "epoch": 0.9435310936383131,
2085
+ "grad_norm": 1.0421243906021118,
2086
+ "learning_rate": 1.9025683185173727e-07,
2087
+ "loss": 0.4509,
2088
+ "step": 1485
2089
+ },
2090
+ {
2091
+ "epoch": 0.9467079660074657,
2092
+ "grad_norm": 1.0599042177200317,
2093
+ "learning_rate": 1.6931043405758128e-07,
2094
+ "loss": 0.438,
2095
+ "step": 1490
2096
+ },
2097
+ {
2098
+ "epoch": 0.9498848383766182,
2099
+ "grad_norm": 0.9902300834655762,
2100
+ "learning_rate": 1.4957548878025029e-07,
2101
+ "loss": 0.4637,
2102
+ "step": 1495
2103
+ },
2104
+ {
2105
+ "epoch": 0.9530617107457708,
2106
+ "grad_norm": 0.9928290843963623,
2107
+ "learning_rate": 1.3105442799045576e-07,
2108
+ "loss": 0.4422,
2109
+ "step": 1500
2110
+ },
2111
+ {
2112
+ "epoch": 0.9562385831149234,
2113
+ "grad_norm": 1.024328589439392,
2114
+ "learning_rate": 1.1374953406987244e-07,
2115
+ "loss": 0.4593,
2116
+ "step": 1505
2117
+ },
2118
+ {
2119
+ "epoch": 0.9594154554840759,
2120
+ "grad_norm": 0.9927188158035278,
2121
+ "learning_rate": 9.766293952987449e-08,
2122
+ "loss": 0.445,
2123
+ "step": 1510
2124
+ },
2125
+ {
2126
+ "epoch": 0.9625923278532285,
2127
+ "grad_norm": 1.156173586845398,
2128
+ "learning_rate": 8.279662674873679e-08,
2129
+ "loss": 0.429,
2130
+ "step": 1515
2131
+ },
2132
+ {
2133
+ "epoch": 0.9657692002223811,
2134
+ "grad_norm": 1.0015678405761719,
2135
+ "learning_rate": 6.915242772734809e-08,
2136
+ "loss": 0.4481,
2137
+ "step": 1520
2138
+ },
2139
+ {
2140
+ "epoch": 0.9689460725915336,
2141
+ "grad_norm": 0.9944911599159241,
2142
+ "learning_rate": 5.673202386345389e-08,
2143
+ "loss": 0.4597,
2144
+ "step": 1525
2145
+ },
2146
+ {
2147
+ "epoch": 0.9721229449606862,
2148
+ "grad_norm": 0.9489125609397888,
2149
+ "learning_rate": 4.553694574444656e-08,
2150
+ "loss": 0.4471,
2151
+ "step": 1530
2152
+ },
2153
+ {
2154
+ "epoch": 0.9752998173298387,
2155
+ "grad_norm": 1.0264545679092407,
2156
+ "learning_rate": 3.5568572958752935e-08,
2157
+ "loss": 0.4408,
2158
+ "step": 1535
2159
+ },
2160
+ {
2161
+ "epoch": 0.9784766896989914,
2162
+ "grad_norm": 1.0240846872329712,
2163
+ "learning_rate": 2.682813392582917e-08,
2164
+ "loss": 0.4575,
2165
+ "step": 1540
2166
+ },
2167
+ {
2168
+ "epoch": 0.9816535620681439,
2169
+ "grad_norm": 0.995697021484375,
2170
+ "learning_rate": 1.9316705744769626e-08,
2171
+ "loss": 0.4261,
2172
+ "step": 1545
2173
+ },
2174
+ {
2175
+ "epoch": 0.9848304344372965,
2176
+ "grad_norm": 1.057746171951294,
2177
+ "learning_rate": 1.3035214061586365e-08,
2178
+ "loss": 0.4561,
2179
+ "step": 1550
2180
+ },
2181
+ {
2182
+ "epoch": 0.9880073068064491,
2183
+ "grad_norm": 1.13213312625885,
2184
+ "learning_rate": 7.984432955133736e-09,
2185
+ "loss": 0.4321,
2186
+ "step": 1555
2187
+ },
2188
+ {
2189
+ "epoch": 0.9911841791756016,
2190
+ "grad_norm": 1.0002557039260864,
2191
+ "learning_rate": 4.164984841715791e-09,
2192
+ "loss": 0.4579,
2193
+ "step": 1560
2194
+ },
2195
+ {
2196
+ "epoch": 0.9943610515447542,
2197
+ "grad_norm": 1.1303766965866089,
2198
+ "learning_rate": 1.5773403983909697e-09,
2199
+ "loss": 0.4427,
2200
+ "step": 1565
2201
+ },
2202
+ {
2203
+ "epoch": 0.9975379239139067,
2204
+ "grad_norm": 1.0552936792373657,
2205
+ "learning_rate": 2.218185049629451e-10,
2206
+ "loss": 0.437,
2207
+ "step": 1570
2208
+ },
2209
+ {
2210
+ "epoch": 0.9994440473353983,
2211
+ "step": 1573,
2212
+ "total_flos": 4.7290819683968614e+17,
2213
+ "train_loss": 0.5221994996298216,
2214
+ "train_runtime": 21044.2981,
2215
+ "train_samples_per_second": 1.795,
2216
+ "train_steps_per_second": 0.075
2217
+ }
2218
+ ],
2219
+ "logging_steps": 5,
2220
+ "max_steps": 1573,
2221
+ "num_input_tokens_seen": 0,
2222
+ "num_train_epochs": 1,
2223
+ "save_steps": 500,
2224
+ "stateful_callbacks": {
2225
+ "TrainerControl": {
2226
+ "args": {
2227
+ "should_epoch_stop": false,
2228
+ "should_evaluate": false,
2229
+ "should_log": false,
2230
+ "should_save": false,
2231
+ "should_training_stop": false
2232
+ },
2233
+ "attributes": {}
2234
+ }
2235
+ },
2236
+ "total_flos": 4.7290819683968614e+17,
2237
+ "train_batch_size": 1,
2238
+ "trial_name": null,
2239
+ "trial_params": null
2240
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea6f2b264ec99239053527328df9a39dd136e18d7b918d675157805bfc66cc16
3
+ size 7096