Update README.md
Browse files
README.md
CHANGED
|
@@ -1,163 +1,166 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
language:
|
| 4 |
-
- en
|
| 5 |
-
- zh
|
| 6 |
-
base_model:
|
| 7 |
-
-
|
| 8 |
-
tags:
|
| 9 |
-
- GGUF
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
>
|
| 21 |
-
>
|
| 22 |
-
>
|
| 23 |
-
>
|
| 24 |
-
>
|
| 25 |
-
> -
|
| 26 |
-
>
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
* **
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
| 65 |
-
|
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
<
|
| 72 |
-
<
|
| 73 |
-
|
| 74 |
-
<
|
| 75 |
-
<th align="center">
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
</
|
| 79 |
-
<
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
<
|
| 83 |
-
<
|
| 84 |
-
</
|
| 85 |
-
<
|
| 86 |
-
<td align="center">
|
| 87 |
-
|
| 88 |
-
<
|
| 89 |
-
</
|
| 90 |
-
</
|
| 91 |
-
</
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
- Or contact us at [email protected] to request a free trial API_KEY
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- zh
|
| 6 |
+
base_model:
|
| 7 |
+
- winninghealth/WiNGPT-Babel-2
|
| 8 |
+
tags:
|
| 9 |
+
- GGUF
|
| 10 |
+
- translation
|
| 11 |
+
- llm
|
| 12 |
+
- multilingual
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# WiNGPT-Babel-2: A Multilingual Translation Language Model
|
| 16 |
+
|
| 17 |
+
[](https://huggingface.co/collections/winninghealth/wingpt-babel-68463d4b2a28d0d675ff3be9)
|
| 18 |
+
[](https://opensource.org/licenses/Apache-2.0)
|
| 19 |
+
|
| 20 |
+
> This is the quantization version (llama.cpp) of [WiNGPT-Babel-2](https://huggingface.co/winninghealth/WiNGPT-Babel-2).
|
| 21 |
+
>
|
| 22 |
+
> Example
|
| 23 |
+
>
|
| 24 |
+
> ```shell
|
| 25 |
+
> ./llama-server -m WiNGPT-Babel-2-GGUF/WiNGPT-Babel-2-IQ4_XS.gguf --jinja --chat-template-file WiNGPT-Babel-2-GGUF/WiNGPT-Babel-2.jinja
|
| 26 |
+
> ```
|
| 27 |
+
>
|
| 28 |
+
> - **--jinja**: This flag activates the Jinja2 chat template processor.
|
| 29 |
+
> - **--chat-template-file**: This flag points the server to the required template file that defines the WiNGPT-Babel-2's custom prompt format.
|
| 30 |
+
|
| 31 |
+
WiNGPT-Babel-2 is a language model optimized for multilingual translation tasks. As an iteration of WiNGPT-Babel, it features significant improvements in language coverage, data format handling, and translation accuracy for complex content.
|
| 32 |
+
|
| 33 |
+
The model continues the "Human-in-the-loop" training strategy, iteratively optimizing through the analysis of log data from real-world application scenarios to ensure its effectiveness and reliability in practical use.
|
| 34 |
+
|
| 35 |
+
## Core Improvements in Version 2.0
|
| 36 |
+
|
| 37 |
+
WiNGPT-Babel-2 introduces the following key technical upgrades over its predecessor:
|
| 38 |
+
|
| 39 |
+
1. **Expanded Language Support:** Through training with the `wmt24pp` dataset, language support has been extended to **55 languages**, primarily enhancing translation capabilities from English (en) to other target languages (xx).
|
| 40 |
+
|
| 41 |
+
2. **Enhanced Chinese Translation:** The translation pipeline from other source languages to Chinese (xx โ zh) has been specifically optimized, improving the accuracy and fluency of the results.
|
| 42 |
+
|
| 43 |
+
3. **Structured Data Translation:** The model can now identify and translate text fields embedded within **structured data (e.g., JSON)** while preserving the original data structure. This feature is suitable for scenarios such as API internationalization and multilingual dataset preprocessing.
|
| 44 |
+
|
| 45 |
+
4. **Mixed-Content Handling:** Its ability to handle mixed-content text has been improved, enabling more accurate translation of paragraphs containing **mathematical expressions (LaTeX), code snippets, and web markup (HTML/Markdown)**, while preserving the format and integrity of these non-translatable elements.
|
| 46 |
+
|
| 47 |
+
## Training Methodology
|
| 48 |
+
|
| 49 |
+
The performance improvements in WiNGPT-Babel-2 are attributed to a continuous, data-driven, iterative training process:
|
| 50 |
+
|
| 51 |
+
1. **Data Collection:** Collecting anonymous, real-world translation task logs from integrated applications (e.g., Immersive Translate, Videolingo).
|
| 52 |
+
2. **Data Refinement:** Using a reward model for rejection sampling on the collected data, supplemented by manual review, to filter high-quality, high-value samples for constructing new training datasets.
|
| 53 |
+
3. **Iterative Retraining:** Using the refined data for the model's incremental training, continuously improving its performance in specific domains and scenarios through a cyclical iterative process.
|
| 54 |
+
|
| 55 |
+
## Technical Specifications
|
| 56 |
+
|
| 57 |
+
* **Base Model:** [GemmaX2-28-2B-Pretrain](https://huggingface.co/ModelSpace/GemmaX2-28-2B-Pretrain)
|
| 58 |
+
* **Primary Training Data:** "Human-in-the-loop" in-house dataset, [WMT24++](https://huggingface.co/datasets/google/wmt24pp) dataset
|
| 59 |
+
* **Maximum Context Length:** 4096 tokens
|
| 60 |
+
* **Chat Capability:** Supports multi-turn dialogue, allowing for contextual follow-up and translation refinement.
|
| 61 |
+
|
| 62 |
+
## Language Support
|
| 63 |
+
|
| 64 |
+
| Direction | Description | Supported Languages (Partial List) |
|
| 65 |
+
| :---------------------- | :--------------------------------------------------- | :----------------------------------------------------------- |
|
| 66 |
+
| **Core Support** | Highest quality, extensively optimized. | `en โ zh` |
|
| 67 |
+
| **Expanded Support** | Supported via `wmt24pp` dataset training. | `en โ 55+ languages`, including: `fr`, `de`, `es`, `ru`, `ar`, `pt`, `ko`, `it`, `nl`, `tr`, `pl`, `sv`... |
|
| 68 |
+
| **Enhanced to Chinese** | Specifically optimized for translation into Chinese. | `xx โ zh` |
|
| 69 |
+
|
| 70 |
+
## Performance
|
| 71 |
+
<table>
|
| 72 |
+
<thead>
|
| 73 |
+
<tr>
|
| 74 |
+
<th rowspan="2" align="center">Model</th>
|
| 75 |
+
<th colspan="2" align="center">FLORES-200</th>
|
| 76 |
+
</tr>
|
| 77 |
+
<tr>
|
| 78 |
+
<th align="center">xx โ en</th>
|
| 79 |
+
<th align="center">xx โ zh</th>
|
| 80 |
+
</tr>
|
| 81 |
+
</thead>
|
| 82 |
+
<tbody>
|
| 83 |
+
<tr>
|
| 84 |
+
<td align="center">WiNGPT-Babel-AWQ</td>
|
| 85 |
+
<td align="center">33.91</td>
|
| 86 |
+
<td align="center">17.29</td>
|
| 87 |
+
</tr>
|
| 88 |
+
<tr>
|
| 89 |
+
<td align="center">WiNGPT-Babel-2-AWQ</td>
|
| 90 |
+
<td align="center">36.43</td>
|
| 91 |
+
<td align="center">30.74</td>
|
| 92 |
+
</tr>
|
| 93 |
+
</tbody>
|
| 94 |
+
</table>
|
| 95 |
+
|
| 96 |
+
**Note**:
|
| 97 |
+
1. The evaluation metric is spBLEU, using the FLORES-200 tokenizer.
|
| 98 |
+
|
| 99 |
+
3. 'xx' represents the 52 source languages from the wmt24pp dataset.
|
| 100 |
+
|
| 101 |
+
## Usage Guide
|
| 102 |
+
|
| 103 |
+
For optimal inference performance, it is recommended to use frameworks such as `vllm`. The following provides a basic usage example using the Hugging Face `transformers` library.
|
| 104 |
+
|
| 105 |
+
**System Prompt:** For optimal automatic language inference, it is recommended to use the unified system prompt: `Translate this to {{to}} Language`. Replace `{{to}}` with the name of the target language. For instance, use `Translate this to Simplified Chinese Language` to translate into Chinese, or `Translate this to English Language` to translate into English. This method provides precise control over the translation direction and yields the most reliable results.
|
| 106 |
+
|
| 107 |
+
### Example
|
| 108 |
+
|
| 109 |
+
```python
|
| 110 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 111 |
+
|
| 112 |
+
model_name = "winninghealth/WiNGPT-Babel-2-AWQ"
|
| 113 |
+
|
| 114 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 115 |
+
model_name,
|
| 116 |
+
torch_dtype="auto",
|
| 117 |
+
device_map="auto"
|
| 118 |
+
)
|
| 119 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 120 |
+
|
| 121 |
+
# Example: Translation of text within a JSON object to Chinese
|
| 122 |
+
prompt_json = """{
|
| 123 |
+
"product_name": "High-Performance Laptop",
|
| 124 |
+
"features": ["Fast Processor", "Long Battery Life", "Lightweight Design"]
|
| 125 |
+
}"""
|
| 126 |
+
|
| 127 |
+
messages = [
|
| 128 |
+
{"role": "system", "content": "Translate this to Simplified Chinese Language"},
|
| 129 |
+
{"role": "user", "content": prompt_json} # Replace with the desired prompt
|
| 130 |
+
]
|
| 131 |
+
|
| 132 |
+
text = tokenizer.apply_chat_template(
|
| 133 |
+
messages,
|
| 134 |
+
tokenize=False,
|
| 135 |
+
add_generation_prompt=True
|
| 136 |
+
)
|
| 137 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 138 |
+
|
| 139 |
+
generated_ids = model.generate(
|
| 140 |
+
**model_inputs,
|
| 141 |
+
max_new_tokens=4096,
|
| 142 |
+
temperature=0
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
generated_ids = [
|
| 146 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 147 |
+
]
|
| 148 |
+
|
| 149 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
For additional usage demos, you can refer to the original [WiNGPT-Babel](https://huggingface.co/winninghealth/WiNGPT-Babel#%F0%9F%8E%AC-%E7%A4%BA%E4%BE%8B).
|
| 153 |
+
|
| 154 |
+
## LICENSE
|
| 155 |
+
|
| 156 |
+
1. This project's license agreement is the Apache License 2.0
|
| 157 |
+
|
| 158 |
+
2. Please cite this project when using its model weights: https://huggingface.co/winninghealth/WiNGPT-Babel-2
|
| 159 |
+
|
| 160 |
+
3. Comply with [gemma-2-2b](https://huggingface.co/google/gemma-2-2b), [GemmaX2-28-2B-v0.1](https://huggingface.co/ModelSpace/GemmaX2-28-2B-v0.1), [immersive-translate](https://github.com/immersive-translate/immersive-translate), [VideoLingo](https://github.com/immersive-translate/immersive-translate) protocols and licenses, details on their website.
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
## Contact Us
|
| 164 |
+
|
| 165 |
+
- Apply for a token through the WiNGPT platform
|
| 166 |
- Or contact us at [email protected] to request a free trial API_KEY
|