# ROSA: Recursive Ontology of Semantic Affect # Sublime Emotional System by Willinton Triana Cardona import torch from transformers import BertTokenizer from model.emotion_model import Rosa # Emotion labels (GoEmotions: 28 + neutral) emotion_labels = [ "admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral" ] # Load tokenizer and model tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = Rosa(model_name="bert-base-uncased", num_emotions=28, emotion_labels=emotion_labels) model.load_state_dict(torch.load("rosa.pt", map_location=torch.device("cpu"))) model.eval() # Inference function def predict(text: str): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): output = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"]) probs = torch.sigmoid(output["logits"]).squeeze() return list(zip(emotion_labels, probs.tolist())) # CLI or API test if __name__ == "__main__": test_text = "My heart is filled with longing and beauty." results = predict(test_text) print("\n🌹 Rosa's Emotional Reading:\n") for emotion, score in results: print(f" → {emotion}: {score:.4f}")