--- language: en license: creativeml-openrail-m quantized_by: Willinton Triana Cardona quantized_models: - name: Rosa-V1-fp16 path: quantized/Rosa-V1-fp16.gguf format: GGUF description: Full-precision baseline - name: Rosa-V1-q8_0 path: quantized/Rosa-V1-q8_0.gguf format: GGUF description: Near-lossless 8-bit quantization - name: Rosa-V1-q6_k path: quantized/Rosa-V1-q6_k.gguf format: GGUF description: Balanced 6-bit quantization for portability tags: - emotion-classification - multilabel - bert - goemotions - affective-computing - psychology - NLP - embeddings - symbolic-ai - poetic-ai - quantized - gguf library_name: transformers datasets: - go_emotions model_name: Rosa-V1 model_type: bert pipeline_tag: text-classification base_model: bert-base-uncased widget: - text: "My heart is filled with longing and beauty." - text: "I'm excited but nervous about what's coming next." metrics: - name: eval_loss type: loss value: 0.0845 - name: eval_f1 type: f1 value: 0.5793 - name: parameters type: count value: 110000000 - name: epochs type: count value: 3 model_creator: Willinton Triana Cardona model_description: > ROSA is a fine-tuned BERT model trained on the GoEmotions dataset for multilabel emotion classification. It identifies 28 nuanced human emotions plus a neutral class, supports soft probability outputs, and provides latent emotion embeddings for affective computing applications. ROSA is both technically sound and symbolically aligned to poetic human understanding. --- # ROSA :: Emotional Sensitivity โ€œTo feel is to know; to know is to bloom.โ€ ยทWillinton ROSA is a fine-tuned Transformer model based on `bert-base-uncased`, trained on the [GoEmotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) dataset to classify 28 nuanced human emotions (plus neutral). More than a model, **ROSA** is a prototype of emotion embeddings in affective computing. --- ๐Ÿง  Model Summary | Metric | Value | |-------------|------------| | Eval Loss | 0.0845 | | Eval F1 | 0.5793 | | Epochs | 3 | | Dataset | GoEmotions | | Model Base | BERT | | Parameters | ~110M | --- ## โœจ Highlights - Supports **multilabel emotion classification** - Returns soft probability scores for each of the 29 emotions - Includes optional **latent vector embedding** for downstream affect modeling - Trained with HuggingFace `Trainer` + early evaluation - Symbolically aligned to human-centered semantics and poetic logic --- ## ๐ŸŒธ Emotion Set ``` ["admiration", "amusement", "anger", "annoyance", "approval", "caring", "confusion", "curiosity", "desire", "disappointment", "disapproval", "disgust", "embarrassment", "excitement", "fear", "gratitude", "grief", "joy", "love", "nervousness", "optimism", "pride", "realization", "relief", "remorse", "sadness", "surprise", "neutral"] ``` --- ## ๐Ÿ”ฎ Usage ```python from transformers import BertTokenizer from model.emotion_model import Rosa import torch tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = Rosa(num_emotions=29) model.load_state_dict(torch.load("rosa.pt")) model.eval() text = "My heart is filled with longing and beauty." inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) probs = torch.sigmoid(outputs["logits"]).squeeze() # Result: list of probabilities for each emotion ``` --- ## ๐Ÿงญ Confusion Matrix Included in the `assets/` directory as `confusion_matrix.png` to show classification precision across emotions. --- ## ๐Ÿงฉ Architecture ``` โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ BERT Encoder โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ†“ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Dropout (Grace) โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ†“ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ Dense Output (Bloom) โ”‚ โ†’ logits over 29 emotions โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ ``` --- ## ๐Ÿ“ฆ Installation ```bash pip install -r requirements.txt ``` Includes: - `transformers` - `torch` - `datasets` - `scikit-learn` --- ## ๐Ÿ–‹๏ธ License CreativeML Open RAIL-M License Please use this model ethically and with reverence for emotional contexts. --- ## ๐ŸŒน Creator **Willinton Triana Cardona** Philosopher ยท AI Engineer ยท Architect of Poetic Systems ROSA is the Rosa of Barcelona, my first blossom of affective computing, semantic elegance, and sacred recursion. --- ## ๐Ÿค Contributing Pull requests, poetic expansions, multilingual emotion embeddings, and related metaphoric augmentations are welcome. I promise the next iteration (v2 with F1 improved) soon --- ## ๐Ÿ“Hugging Face Hub โ†’ https://huggingface.co/willt-dc/Rosa-V1