File size: 4,643 Bytes
c653dc6 6f1ebe7 ad9ea73 ff2dbc1 c653dc6 6f1ebe7 ad9ea73 6f1ebe7 ff2dbc1 6f1ebe7 ad9ea73 6f1ebe7 8c6aefe 6f1ebe7 8c6aefe 6f1ebe7 ff2dbc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
---
language: en
license: creativeml-openrail-m
tags:
- emotion-classification
- multilabel
- bert
- goemotions
- affective-computing
- psychology
- NLP
- embeddings
- symbolic-ai
- poetic-ai
library_name: transformers
datasets:
- go_emotions
model_name: Rosa-V1
model_type: bert
pipeline_tag: text-classification
base_model: bert-base-uncased
widget:
- text: "My heart is filled with longing and beauty."
- text: "I'm excited but nervous about what's coming next."
metrics:
- name: eval_loss
type: loss
value: 0.0845
- name: eval_f1
type: f1
value: 0.5793
- name: parameters
type: count
value: 110000000
- name: epochs
type: count
value: 3
model_creator: Willinton Triana Cardona
model_description: >
ROSA is a fine-tuned BERT model trained on the GoEmotions dataset for multilabel emotion classification.
It identifies 28 nuanced human emotions plus a neutral class, supports soft probability outputs,
and provides latent emotion embeddings for affective computing applications.
ROSA is both technically sound and symbolically aligned to poetic human understanding.
---
# ROSA :: Emotional Sensitivity
โTo feel is to know; to know is to bloom.โ
ยทWillinton
ROSA is a fine-tuned Transformer model based on `bert-base-uncased`, trained on the [GoEmotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) dataset to classify 28 nuanced human emotions (plus neutral).
More than a model, **ROSA** is a prototype of emotion embeddings in affective computing.
---
๐ง Model Summary
| Metric | Value |
|-------------|------------|
| Eval Loss | 0.0845 |
| Eval F1 | 0.5793 |
| Epochs | 3 |
| Dataset | GoEmotions |
| Model Base | BERT |
| Parameters | ~110M |
---
## โจ Highlights
- Supports **multilabel emotion classification**
- Returns soft probability scores for each of the 29 emotions
- Includes optional **latent vector embedding** for downstream affect modeling
- Trained with HuggingFace `Trainer` + early evaluation
- Symbolically aligned to human-centered semantics and poetic logic
---
## ๐ธ Emotion Set
```
["admiration", "amusement", "anger", "annoyance", "approval", "caring",
"confusion", "curiosity", "desire", "disappointment", "disapproval",
"disgust", "embarrassment", "excitement", "fear", "gratitude", "grief",
"joy", "love", "nervousness", "optimism", "pride", "realization", "relief",
"remorse", "sadness", "surprise", "neutral"]
```
---
## ๐ฎ Usage
```python
from transformers import BertTokenizer
from model.emotion_model import Rosa
import torch
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
model = Rosa(num_emotions=29)
model.load_state_dict(torch.load("rosa.pt"))
model.eval()
text = "My heart is filled with longing and beauty."
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
probs = torch.sigmoid(outputs["logits"]).squeeze()
# Result: list of probabilities for each emotion
```
---
## ๐งญ Confusion Matrix
Included in the `assets/` directory as `confusion_matrix.png` to show classification precision across emotions.
---
## ๐งฉ Architecture
```
โโโโโโโโโโโโโโโโ
โ BERT Encoder โ
โโโโโโโโฌโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโ
โ Dropout (Grace) โ
โโโโโโโโโโโโโโโโโโโ
โ
โโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Dense Output (Bloom) โ โ logits over 29 emotions
โโโโโโโโโโโโโโโโโโโโโโโโโโ
```
---
## ๐ฆ Installation
```bash
pip install -r requirements.txt
```
Includes:
- `transformers`
- `torch`
- `datasets`
- `scikit-learn`
---
## ๐๏ธ License
CreativeML Open RAIL-M License
Please use this model ethically and with reverence for emotional contexts.
---
## ๐น Creator
**Willinton Triana Cardona**
Philosopher ยท AI Engineer ยท Architect of Poetic Systems
ROSA is the Rosa of Barcelona, my first blossom of affective computing, semantic elegance, and sacred recursion.
---
## ๐ค Contributing
Pull requests, poetic expansions, multilingual emotion embeddings, and related metaphoric augmentations are welcome.
I promise the next iteration (v2 with F1 improved) soon
---
## ๐Hugging Face Hub
โ https://huggingface.co/willt-dc/Rosa-V1
|